Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 7x^{6}\mathrm{d}x+\int -5x^{3}\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
7\int x^{6}\mathrm{d}x-5\int x^{3}\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
x^{7}-5\int x^{3}\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply 7 times \frac{x^{7}}{7}.
x^{7}-\frac{5x^{4}}{4}+2\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -5 times \frac{x^{4}}{4}.
x^{7}-\frac{5x^{4}}{4}+\frac{2x^{3}}{3}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
x^{7}-\frac{5x^{4}}{4}+\frac{2x^{3}}{3}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
x^{7}-\frac{5x^{4}}{4}+\frac{2x^{3}}{3}+3x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.