Evaluate
-1-\frac{6}{x}
Expand
-1-\frac{6}{x}
Graph
Quiz
Polynomial
5 problems similar to:
= \frac { x } { 4 - x } - \frac { 2 ( x - 12 ) } { x ( x - 4 ) }
Share
Copied to clipboard
\frac{x\left(-1\right)x}{x\left(x-4\right)}-\frac{2\left(x-12\right)}{x\left(x-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4-x and x\left(x-4\right) is x\left(x-4\right). Multiply \frac{x}{4-x} times \frac{-x}{-x}.
\frac{x\left(-1\right)x-2\left(x-12\right)}{x\left(x-4\right)}
Since \frac{x\left(-1\right)x}{x\left(x-4\right)} and \frac{2\left(x-12\right)}{x\left(x-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}-2x+24}{x\left(x-4\right)}
Do the multiplications in x\left(-1\right)x-2\left(x-12\right).
\frac{\left(x+6\right)\left(-x+4\right)}{x\left(x-4\right)}
Factor the expressions that are not already factored in \frac{-x^{2}-2x+24}{x\left(x-4\right)}.
\frac{-\left(x-4\right)\left(x+6\right)}{x\left(x-4\right)}
Extract the negative sign in 4-x.
\frac{-\left(x+6\right)}{x}
Cancel out x-4 in both numerator and denominator.
\frac{-x-6}{x}
To find the opposite of x+6, find the opposite of each term.
\frac{x\left(-1\right)x}{x\left(x-4\right)}-\frac{2\left(x-12\right)}{x\left(x-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4-x and x\left(x-4\right) is x\left(x-4\right). Multiply \frac{x}{4-x} times \frac{-x}{-x}.
\frac{x\left(-1\right)x-2\left(x-12\right)}{x\left(x-4\right)}
Since \frac{x\left(-1\right)x}{x\left(x-4\right)} and \frac{2\left(x-12\right)}{x\left(x-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}-2x+24}{x\left(x-4\right)}
Do the multiplications in x\left(-1\right)x-2\left(x-12\right).
\frac{\left(x+6\right)\left(-x+4\right)}{x\left(x-4\right)}
Factor the expressions that are not already factored in \frac{-x^{2}-2x+24}{x\left(x-4\right)}.
\frac{-\left(x-4\right)\left(x+6\right)}{x\left(x-4\right)}
Extract the negative sign in 4-x.
\frac{-\left(x+6\right)}{x}
Cancel out x-4 in both numerator and denominator.
\frac{-x-6}{x}
To find the opposite of x+6, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}