Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{n-2}{n-1}+\frac{3}{\left(n-1\right)\left(n+4\right)}
Factor n^{2}+3n-4.
\frac{\left(n-2\right)\left(n+4\right)}{\left(n-1\right)\left(n+4\right)}+\frac{3}{\left(n-1\right)\left(n+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-1 and \left(n-1\right)\left(n+4\right) is \left(n-1\right)\left(n+4\right). Multiply \frac{n-2}{n-1} times \frac{n+4}{n+4}.
\frac{\left(n-2\right)\left(n+4\right)+3}{\left(n-1\right)\left(n+4\right)}
Since \frac{\left(n-2\right)\left(n+4\right)}{\left(n-1\right)\left(n+4\right)} and \frac{3}{\left(n-1\right)\left(n+4\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}+4n-2n-8+3}{\left(n-1\right)\left(n+4\right)}
Do the multiplications in \left(n-2\right)\left(n+4\right)+3.
\frac{n^{2}+2n-5}{\left(n-1\right)\left(n+4\right)}
Combine like terms in n^{2}+4n-2n-8+3.
\frac{n^{2}+2n-5}{n^{2}+3n-4}
Expand \left(n-1\right)\left(n+4\right).
\frac{n-2}{n-1}+\frac{3}{\left(n-1\right)\left(n+4\right)}
Factor n^{2}+3n-4.
\frac{\left(n-2\right)\left(n+4\right)}{\left(n-1\right)\left(n+4\right)}+\frac{3}{\left(n-1\right)\left(n+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-1 and \left(n-1\right)\left(n+4\right) is \left(n-1\right)\left(n+4\right). Multiply \frac{n-2}{n-1} times \frac{n+4}{n+4}.
\frac{\left(n-2\right)\left(n+4\right)+3}{\left(n-1\right)\left(n+4\right)}
Since \frac{\left(n-2\right)\left(n+4\right)}{\left(n-1\right)\left(n+4\right)} and \frac{3}{\left(n-1\right)\left(n+4\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}+4n-2n-8+3}{\left(n-1\right)\left(n+4\right)}
Do the multiplications in \left(n-2\right)\left(n+4\right)+3.
\frac{n^{2}+2n-5}{\left(n-1\right)\left(n+4\right)}
Combine like terms in n^{2}+4n-2n-8+3.
\frac{n^{2}+2n-5}{n^{2}+3n-4}
Expand \left(n-1\right)\left(n+4\right).