Solve for A
A=\frac{39S}{50}
n\neq 0\text{ and }S\neq 0
Solve for S
S=\frac{50A}{39}
A\neq 0\text{ and }n\neq 0
Share
Copied to clipboard
100nA=Sn\times 78
Multiply both sides of the equation by 100Sn, the least common multiple of nS,100.
100An=78Sn
Reorder the terms.
100nA=78Sn
The equation is in standard form.
\frac{100nA}{100n}=\frac{78Sn}{100n}
Divide both sides by 100n.
A=\frac{78Sn}{100n}
Dividing by 100n undoes the multiplication by 100n.
A=\frac{39S}{50}
Divide 78Sn by 100n.
100nA=Sn\times 78
Variable S cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 100Sn, the least common multiple of nS,100.
Sn\times 78=100nA
Swap sides so that all variable terms are on the left hand side.
78nS=100An
The equation is in standard form.
\frac{78nS}{78n}=\frac{100An}{78n}
Divide both sides by 78n.
S=\frac{100An}{78n}
Dividing by 78n undoes the multiplication by 78n.
S=\frac{50A}{39}
Divide 100nA by 78n.
S=\frac{50A}{39}\text{, }S\neq 0
Variable S cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}