Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\frac{k\left(k-6\right)}{\left(k-6\right)\left(k-2\right)}+\frac{k-2}{\left(k-6\right)\left(k-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k-2 and k-6 is \left(k-6\right)\left(k-2\right). Multiply \frac{k}{k-2} times \frac{k-6}{k-6}. Multiply \frac{1}{k-6} times \frac{k-2}{k-2}.
\frac{k\left(k-6\right)+k-2}{\left(k-6\right)\left(k-2\right)}
Since \frac{k\left(k-6\right)}{\left(k-6\right)\left(k-2\right)} and \frac{k-2}{\left(k-6\right)\left(k-2\right)} have the same denominator, add them by adding their numerators.
\frac{k^{2}-6k+k-2}{\left(k-6\right)\left(k-2\right)}
Do the multiplications in k\left(k-6\right)+k-2.
\frac{k^{2}-5k-2}{\left(k-6\right)\left(k-2\right)}
Combine like terms in k^{2}-6k+k-2.
\frac{k^{2}-5k-2}{k^{2}-8k+12}
Expand \left(k-6\right)\left(k-2\right).