Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(9\left(x^{2}\right)^{2}+24x^{2}+16\right)\left(3-x^{3}\right)^{4})
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x^{2}+4\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(9x^{4}+24x^{2}+16\right)\left(3-x^{3}\right)^{4})
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(9x^{6}+24x^{4}+16x^{2}\right)\left(3-x^{3}\right)^{4})
Use the distributive property to multiply x^{2} by 9x^{4}+24x^{2}+16.
\frac{\mathrm{d}}{\mathrm{d}x}(9x^{6}\left(3-x^{3}\right)^{4}+24x^{4}\left(3-x^{3}\right)^{4}+16x^{2}\left(3-x^{3}\right)^{4})
Use the distributive property to multiply 9x^{6}+24x^{4}+16x^{2} by \left(3-x^{3}\right)^{4}.
6\times 9\left(3-x^{3}\right)^{4}x^{6-1}+4\times 24\left(3-x^{3}\right)^{4}x^{4-1}+2\times 16\left(3-x^{3}\right)^{4}x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
54\left(3-x^{3}\right)^{4}x^{6-1}+4\times 24\left(3-x^{3}\right)^{4}x^{4-1}+2\times 16\left(3-x^{3}\right)^{4}x^{2-1}
Multiply 6 times 9\left(3-x^{3}\right)^{4}.
54\left(3-x^{3}\right)^{4}x^{5}+4\times 24\left(3-x^{3}\right)^{4}x^{4-1}+2\times 16\left(3-x^{3}\right)^{4}x^{2-1}
Subtract 1 from 6.
54\left(3-x^{3}\right)^{4}x^{5}+96\left(3-x^{3}\right)^{4}x^{4-1}+2\times 16\left(3-x^{3}\right)^{4}x^{2-1}
Multiply 4 times 24\left(3-x^{3}\right)^{4}.
54\left(3-x^{3}\right)^{4}x^{5}+96\left(3-x^{3}\right)^{4}x^{3}+2\times 16\left(3-x^{3}\right)^{4}x^{2-1}
Subtract 1 from 4.
54\left(3-x^{3}\right)^{4}x^{5}+96\left(3-x^{3}\right)^{4}x^{3}+32\left(3-x^{3}\right)^{4}x^{2-1}
Multiply 4 times 24\left(3-x^{3}\right)^{4}.
54\left(3-x^{3}\right)^{4}x^{5}+96\left(3-x^{3}\right)^{4}x^{3}+32\left(3-x^{3}\right)^{4}x^{1}
Subtract 1 from 2.
54\left(3-x^{3}\right)^{4}x^{5}+96\left(3-x^{3}\right)^{4}x^{3}+32\left(3-x^{3}\right)^{4}x
For any term t, t^{1}=t.