Evaluate
\frac{a\lambda -3a+2\lambda }{a^{2}-1}
Expand
\frac{a\lambda -3a+2\lambda }{a^{2}-1}
Share
Copied to clipboard
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a}{a+2}-\frac{1}{a\left(a+2\right)}}
Factor a^{2}+2a.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa}{a\left(a+2\right)}-\frac{1}{a\left(a+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a+2\right) is a\left(a+2\right). Multiply \frac{a}{a+2} times \frac{a}{a}.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa-1}{a\left(a+2\right)}}
Since \frac{aa}{a\left(a+2\right)} and \frac{1}{a\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a^{2}-1}{a\left(a+2\right)}}
Do the multiplications in aa-1.
\frac{a}{a+1}-\frac{\left(a-\lambda \right)a\left(a+2\right)}{a\left(a^{2}-1\right)}
Divide \frac{a-\lambda }{a} by \frac{a^{2}-1}{a\left(a+2\right)} by multiplying \frac{a-\lambda }{a} by the reciprocal of \frac{a^{2}-1}{a\left(a+2\right)}.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a-a^{2}+a\lambda -2a+2\lambda }{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right).
\frac{-3a+a\lambda +2\lambda }{\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}-a-a^{2}+a\lambda -2a+2\lambda .
\frac{-3a+a\lambda +2\lambda }{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a}{a+2}-\frac{1}{a\left(a+2\right)}}
Factor a^{2}+2a.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa}{a\left(a+2\right)}-\frac{1}{a\left(a+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a+2\right) is a\left(a+2\right). Multiply \frac{a}{a+2} times \frac{a}{a}.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa-1}{a\left(a+2\right)}}
Since \frac{aa}{a\left(a+2\right)} and \frac{1}{a\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a^{2}-1}{a\left(a+2\right)}}
Do the multiplications in aa-1.
\frac{a}{a+1}-\frac{\left(a-\lambda \right)a\left(a+2\right)}{a\left(a^{2}-1\right)}
Divide \frac{a-\lambda }{a} by \frac{a^{2}-1}{a\left(a+2\right)} by multiplying \frac{a-\lambda }{a} by the reciprocal of \frac{a^{2}-1}{a\left(a+2\right)}.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a-a^{2}+a\lambda -2a+2\lambda }{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right).
\frac{-3a+a\lambda +2\lambda }{\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}-a-a^{2}+a\lambda -2a+2\lambda .
\frac{-3a+a\lambda +2\lambda }{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}