Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a}{a+2}-\frac{1}{a\left(a+2\right)}}
Factor a^{2}+2a.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa}{a\left(a+2\right)}-\frac{1}{a\left(a+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a+2\right) is a\left(a+2\right). Multiply \frac{a}{a+2} times \frac{a}{a}.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa-1}{a\left(a+2\right)}}
Since \frac{aa}{a\left(a+2\right)} and \frac{1}{a\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a^{2}-1}{a\left(a+2\right)}}
Do the multiplications in aa-1.
\frac{a}{a+1}-\frac{\left(a-\lambda \right)a\left(a+2\right)}{a\left(a^{2}-1\right)}
Divide \frac{a-\lambda }{a} by \frac{a^{2}-1}{a\left(a+2\right)} by multiplying \frac{a-\lambda }{a} by the reciprocal of \frac{a^{2}-1}{a\left(a+2\right)}.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a-a^{2}+a\lambda -2a+2\lambda }{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right).
\frac{-3a+a\lambda +2\lambda }{\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}-a-a^{2}+a\lambda -2a+2\lambda .
\frac{-3a+a\lambda +2\lambda }{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a}{a+2}-\frac{1}{a\left(a+2\right)}}
Factor a^{2}+2a.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa}{a\left(a+2\right)}-\frac{1}{a\left(a+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a+2\right) is a\left(a+2\right). Multiply \frac{a}{a+2} times \frac{a}{a}.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{aa-1}{a\left(a+2\right)}}
Since \frac{aa}{a\left(a+2\right)} and \frac{1}{a\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a}{a+1}-\frac{\frac{a-\lambda }{a}}{\frac{a^{2}-1}{a\left(a+2\right)}}
Do the multiplications in aa-1.
\frac{a}{a+1}-\frac{\left(a-\lambda \right)a\left(a+2\right)}{a\left(a^{2}-1\right)}
Divide \frac{a-\lambda }{a} by \frac{a^{2}-1}{a\left(a+2\right)} by multiplying \frac{a-\lambda }{a} by the reciprocal of \frac{a^{2}-1}{a\left(a+2\right)}.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{a}{a+1}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a+2\right)\left(a-\lambda \right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a-a^{2}+a\lambda -2a+2\lambda }{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a\left(a-1\right)-\left(a+2\right)\left(a-\lambda \right).
\frac{-3a+a\lambda +2\lambda }{\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}-a-a^{2}+a\lambda -2a+2\lambda .
\frac{-3a+a\lambda +2\lambda }{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).