Solve for P
\left\{\begin{matrix}P=\frac{a^{4}+2a^{3}-22a+4b^{3}-40}{2a}\text{, }&a\neq 0\\P\in \mathrm{R}\text{, }&b=2\sqrt[3]{5}\times \frac{4^{\frac{2}{3}}}{4}\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
a^{4}+2a^{3}+4b^{3}-22a-40=2Pa
Multiply both sides of the equation by 2.
2Pa=a^{4}+2a^{3}+4b^{3}-22a-40
Swap sides so that all variable terms are on the left hand side.
2aP=a^{4}+2a^{3}-22a+4b^{3}-40
The equation is in standard form.
\frac{2aP}{2a}=\frac{a^{4}+2a^{3}-22a+4b^{3}-40}{2a}
Divide both sides by 2a.
P=\frac{a^{4}+2a^{3}-22a+4b^{3}-40}{2a}
Dividing by 2a undoes the multiplication by 2a.
P=\frac{a^{3}}{2}+\frac{2b^{3}-20}{a}+a^{2}-11
Divide a^{4}+2a^{3}+4b^{3}-22a-40 by 2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}