Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{a^{2}+2a+1}
Factor the expressions that are not already factored in \frac{a^{2}+a}{a^{2}-1}.
\frac{a}{a-1}-\frac{a+1}{a^{2}+2a+1}
Cancel out a+1 in both numerator and denominator.
\frac{a}{a-1}-\frac{a+1}{\left(a+1\right)^{2}}
Factor the expressions that are not already factored in \frac{a+1}{a^{2}+2a+1}.
\frac{a}{a-1}-\frac{1}{a+1}
Cancel out a+1 in both numerator and denominator.
\frac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a-1}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a+1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a-1} times \frac{a+1}{a+1}. Multiply \frac{1}{a+1} times \frac{a-1}{a-1}.
\frac{a\left(a+1\right)-\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a-1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a-a+1}{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a\left(a+1\right)-\left(a-1\right).
\frac{a^{2}+1}{\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}+a-a+1.
\frac{a^{2}+1}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
\frac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{a^{2}+2a+1}
Factor the expressions that are not already factored in \frac{a^{2}+a}{a^{2}-1}.
\frac{a}{a-1}-\frac{a+1}{a^{2}+2a+1}
Cancel out a+1 in both numerator and denominator.
\frac{a}{a-1}-\frac{a+1}{\left(a+1\right)^{2}}
Factor the expressions that are not already factored in \frac{a+1}{a^{2}+2a+1}.
\frac{a}{a-1}-\frac{1}{a+1}
Cancel out a+1 in both numerator and denominator.
\frac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a-1}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a+1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a}{a-1} times \frac{a+1}{a+1}. Multiply \frac{1}{a+1} times \frac{a-1}{a-1}.
\frac{a\left(a+1\right)-\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a-1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a-a+1}{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a\left(a+1\right)-\left(a-1\right).
\frac{a^{2}+1}{\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}+a-a+1.
\frac{a^{2}+1}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).