Evaluate
3\sqrt{5}\approx 6.708203932
Share
Copied to clipboard
\frac{\frac{9}{4}\times 2}{\frac{3}{8}\sqrt{\frac{3\times 5+1}{5}}}
Calculate the square root of 4 and get 2.
\frac{\frac{9\times 2}{4}}{\frac{3}{8}\sqrt{\frac{3\times 5+1}{5}}}
Express \frac{9}{4}\times 2 as a single fraction.
\frac{\frac{18}{4}}{\frac{3}{8}\sqrt{\frac{3\times 5+1}{5}}}
Multiply 9 and 2 to get 18.
\frac{\frac{9}{2}}{\frac{3}{8}\sqrt{\frac{3\times 5+1}{5}}}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{9}{2}}{\frac{3}{8}\sqrt{\frac{15+1}{5}}}
Multiply 3 and 5 to get 15.
\frac{\frac{9}{2}}{\frac{3}{8}\sqrt{\frac{16}{5}}}
Add 15 and 1 to get 16.
\frac{\frac{9}{2}}{\frac{3}{8}\times \frac{\sqrt{16}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{16}{5}} as the division of square roots \frac{\sqrt{16}}{\sqrt{5}}.
\frac{\frac{9}{2}}{\frac{3}{8}\times \frac{4}{\sqrt{5}}}
Calculate the square root of 16 and get 4.
\frac{\frac{9}{2}}{\frac{3}{8}\times \frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{4}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{9}{2}}{\frac{3}{8}\times \frac{4\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{\frac{9}{2}}{\frac{3\times 4\sqrt{5}}{8\times 5}}
Multiply \frac{3}{8} times \frac{4\sqrt{5}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{9}{2}}{\frac{3\sqrt{5}}{2\times 5}}
Cancel out 4 in both numerator and denominator.
\frac{9\times 2\times 5}{2\times 3\sqrt{5}}
Divide \frac{9}{2} by \frac{3\sqrt{5}}{2\times 5} by multiplying \frac{9}{2} by the reciprocal of \frac{3\sqrt{5}}{2\times 5}.
\frac{3\times 5}{\sqrt{5}}
Cancel out 2\times 3 in both numerator and denominator.
\frac{3\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{3\times 5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\times 5\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{15\sqrt{5}}{5}
Multiply 3 and 5 to get 15.
3\sqrt{5}
Divide 15\sqrt{5} by 5 to get 3\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}