Evaluate
\frac{43}{15}\approx 2.866666667
Factor
\frac{43}{3 \cdot 5} = 2\frac{13}{15} = 2.8666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)86}\\\end{array}
Use the 1^{st} digit 8 from dividend 86
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)86}\\\end{array}
Since 8 is less than 30, use the next digit 6 from dividend 86 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)86}\\\end{array}
Use the 2^{nd} digit 6 from dividend 86
\begin{array}{l}\phantom{30)}02\phantom{4}\\30\overline{)86}\\\phantom{30)}\underline{\phantom{}60\phantom{}}\\\phantom{30)}26\\\end{array}
Find closest multiple of 30 to 86. We see that 2 \times 30 = 60 is the nearest. Now subtract 60 from 86 to get reminder 26. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }26
Since 26 is less than 30, stop the division. The reminder is 26. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}