Evaluate
\frac{605224609375000000000Nk^{3}}{3}
Expand
\frac{605224609375000000000Nk^{3}}{3}
Share
Copied to clipboard
\frac{6.7\times 10^{13}Nm^{2}kg^{-2}\times 6kg\times 7.4\times 10^{22}kg}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add -11 and 24 to get 13.
\frac{6.7\times 10^{35}Nm^{2}kg^{-2}\times 6kg\times 7.4kg}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add 13 and 22 to get 35.
\frac{6.7\times 10^{35}Nm^{2}k^{2}g^{-2}\times 6g\times 7.4kg}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply k and k to get k^{2}.
\frac{6.7\times 10^{35}Nm^{2}k^{3}g^{-2}\times 6g\times 7.4g}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{6.7\times 10^{35}Nm^{2}k^{3}g^{-1}\times 6\times 7.4g}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add -2 and 1 to get -1.
\frac{6.7\times 10^{35}Nm^{2}k^{3}\times 6\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply g^{-1} and g to get 1.
\frac{6.7\times 100000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Calculate 10 to the power of 35 and get 100000000000000000000000000000000000.
\frac{670000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply 6.7 and 100000000000000000000000000000000000 to get 670000000000000000000000000000000000.
\frac{4020000000000000000000000000000000000Nm^{2}k^{3}\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply 670000000000000000000000000000000000 and 6 to get 4020000000000000000000000000000000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply 4020000000000000000000000000000000000 and 7.4 to get 29748000000000000000000000000000000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{\left(3.84\times 100000000m\right)^{2}}
Calculate 10 to the power of 8 and get 100000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{\left(384000000m\right)^{2}}
Multiply 3.84 and 100000000 to get 384000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{384000000^{2}m^{2}}
Expand \left(384000000m\right)^{2}.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{147456000000000000m^{2}}
Calculate 384000000 to the power of 2 and get 147456000000000000.
\frac{605224609375000000000Nk^{3}}{3}
Cancel out 49152000000000000m^{2} in both numerator and denominator.
\frac{6.7\times 10^{13}Nm^{2}kg^{-2}\times 6kg\times 7.4\times 10^{22}kg}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add -11 and 24 to get 13.
\frac{6.7\times 10^{35}Nm^{2}kg^{-2}\times 6kg\times 7.4kg}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add 13 and 22 to get 35.
\frac{6.7\times 10^{35}Nm^{2}k^{2}g^{-2}\times 6g\times 7.4kg}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply k and k to get k^{2}.
\frac{6.7\times 10^{35}Nm^{2}k^{3}g^{-2}\times 6g\times 7.4g}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{6.7\times 10^{35}Nm^{2}k^{3}g^{-1}\times 6\times 7.4g}{\left(3.84\times 10^{8}m\right)^{2}}
To multiply powers of the same base, add their exponents. Add -2 and 1 to get -1.
\frac{6.7\times 10^{35}Nm^{2}k^{3}\times 6\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply g^{-1} and g to get 1.
\frac{6.7\times 100000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Calculate 10 to the power of 35 and get 100000000000000000000000000000000000.
\frac{670000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply 6.7 and 100000000000000000000000000000000000 to get 670000000000000000000000000000000000.
\frac{4020000000000000000000000000000000000Nm^{2}k^{3}\times 7.4}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply 670000000000000000000000000000000000 and 6 to get 4020000000000000000000000000000000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{\left(3.84\times 10^{8}m\right)^{2}}
Multiply 4020000000000000000000000000000000000 and 7.4 to get 29748000000000000000000000000000000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{\left(3.84\times 100000000m\right)^{2}}
Calculate 10 to the power of 8 and get 100000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{\left(384000000m\right)^{2}}
Multiply 3.84 and 100000000 to get 384000000.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{384000000^{2}m^{2}}
Expand \left(384000000m\right)^{2}.
\frac{29748000000000000000000000000000000000Nm^{2}k^{3}}{147456000000000000m^{2}}
Calculate 384000000 to the power of 2 and get 147456000000000000.
\frac{605224609375000000000Nk^{3}}{3}
Cancel out 49152000000000000m^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}