Solve for λ
\lambda =\frac{35}{36}\approx 0.972222222
Share
Copied to clipboard
\left(-\lambda +1\right)\left(6-71\right)+3-\lambda =8\left(-\lambda +1\right)
Variable \lambda cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -\lambda +1.
\left(-\lambda +1\right)\left(-65\right)+3-\lambda =8\left(-\lambda +1\right)
Subtract 71 from 6 to get -65.
65\lambda -65+3-\lambda =8\left(-\lambda +1\right)
Use the distributive property to multiply -\lambda +1 by -65.
65\lambda -62-\lambda =8\left(-\lambda +1\right)
Add -65 and 3 to get -62.
64\lambda -62=8\left(-\lambda +1\right)
Combine 65\lambda and -\lambda to get 64\lambda .
64\lambda -62=-8\lambda +8
Use the distributive property to multiply 8 by -\lambda +1.
64\lambda -62+8\lambda =8
Add 8\lambda to both sides.
72\lambda -62=8
Combine 64\lambda and 8\lambda to get 72\lambda .
72\lambda =8+62
Add 62 to both sides.
72\lambda =70
Add 8 and 62 to get 70.
\lambda =\frac{70}{72}
Divide both sides by 72.
\lambda =\frac{35}{36}
Reduce the fraction \frac{70}{72} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}