Evaluate
5\sqrt{5}+15\approx 26.180339887
Factor
5 {(\sqrt{5} + 3)} = 26.180339887
Share
Copied to clipboard
\frac{\left(6-2\sqrt{5}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Rationalize the denominator of \frac{6-2\sqrt{5}}{\sqrt{5}-2} by multiplying numerator and denominator by \sqrt{5}+2.
\frac{\left(6-2\sqrt{5}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Consider \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6-2\sqrt{5}\right)\left(\sqrt{5}+2\right)}{5-4}\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Square \sqrt{5}. Square 2.
\frac{\left(6-2\sqrt{5}\right)\left(\sqrt{5}+2\right)}{1}\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Subtract 4 from 5 to get 1.
\left(6-2\sqrt{5}\right)\left(\sqrt{5}+2\right)\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Anything divided by one gives itself.
\left(6\sqrt{5}+12-2\left(\sqrt{5}\right)^{2}-4\sqrt{5}\right)\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Apply the distributive property by multiplying each term of 6-2\sqrt{5} by each term of \sqrt{5}+2.
\left(6\sqrt{5}+12-2\times 5-4\sqrt{5}\right)\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
The square of \sqrt{5} is 5.
\left(6\sqrt{5}+12-10-4\sqrt{5}\right)\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Multiply -2 and 5 to get -10.
\left(6\sqrt{5}+2-4\sqrt{5}\right)\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Subtract 10 from 12 to get 2.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}}{3-\sqrt{5}}\times \frac{10}{5+\sqrt{5}}
Combine 6\sqrt{5} and -4\sqrt{5} to get 2\sqrt{5}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\times \frac{10}{5+\sqrt{5}}
Rationalize the denominator of \frac{\sqrt{5}}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}\times \frac{10}{5+\sqrt{5}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{9-5}\times \frac{10}{5+\sqrt{5}}
Square 3. Square \sqrt{5}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\times \frac{10}{5+\sqrt{5}}
Subtract 5 from 9 to get 4.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\times \frac{10\left(5-\sqrt{5}\right)}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}
Rationalize the denominator of \frac{10}{5+\sqrt{5}} by multiplying numerator and denominator by 5-\sqrt{5}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\times \frac{10\left(5-\sqrt{5}\right)}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\times \frac{10\left(5-\sqrt{5}\right)}{25-5}
Square 5. Square \sqrt{5}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\times \frac{10\left(5-\sqrt{5}\right)}{20}
Subtract 5 from 25 to get 20.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\times \frac{1}{2}\left(5-\sqrt{5}\right)
Divide 10\left(5-\sqrt{5}\right) by 20 to get \frac{1}{2}\left(5-\sqrt{5}\right).
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(\frac{1}{2}\times 5+\frac{1}{2}\left(-1\right)\sqrt{5}\right)
Use the distributive property to multiply \frac{1}{2} by 5-\sqrt{5}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(\frac{5}{2}+\frac{1}{2}\left(-1\right)\sqrt{5}\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)
Express \left(2\sqrt{5}+2\right)\times \frac{\sqrt{5}\left(3+\sqrt{5}\right)}{4} as a single fraction.
\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Use the distributive property to multiply \frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4} by \frac{5}{2}-\frac{1}{2}\sqrt{5}.
\frac{\left(2\left(\sqrt{5}\right)^{2}+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Use the distributive property to multiply 2\sqrt{5}+2 by \sqrt{5}.
\frac{\left(2\times 5+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
The square of \sqrt{5} is 5.
\frac{\left(10+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Multiply 2 and 5 to get 10.
\frac{30+10\sqrt{5}+6\sqrt{5}+2\left(\sqrt{5}\right)^{2}}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Apply the distributive property by multiplying each term of 10+2\sqrt{5} by each term of 3+\sqrt{5}.
\frac{30+16\sqrt{5}+2\left(\sqrt{5}\right)^{2}}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Combine 10\sqrt{5} and 6\sqrt{5} to get 16\sqrt{5}.
\frac{30+16\sqrt{5}+2\times 5}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
The square of \sqrt{5} is 5.
\frac{30+16\sqrt{5}+10}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Multiply 2 and 5 to get 10.
\frac{40+16\sqrt{5}}{4}\times \frac{5}{2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Add 30 and 10 to get 40.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{\left(2\sqrt{5}+2\right)\sqrt{5}\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Multiply \frac{40+16\sqrt{5}}{4} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{\left(2\left(\sqrt{5}\right)^{2}+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Use the distributive property to multiply 2\sqrt{5}+2 by \sqrt{5}.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{\left(2\times 5+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
The square of \sqrt{5} is 5.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{\left(10+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Multiply 2 and 5 to get 10.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{30+10\sqrt{5}+6\sqrt{5}+2\left(\sqrt{5}\right)^{2}}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Apply the distributive property by multiplying each term of 10+2\sqrt{5} by each term of 3+\sqrt{5}.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{30+16\sqrt{5}+2\left(\sqrt{5}\right)^{2}}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Combine 10\sqrt{5} and 6\sqrt{5} to get 16\sqrt{5}.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{30+16\sqrt{5}+2\times 5}{4}\left(-\frac{1}{2}\right)\sqrt{5}
The square of \sqrt{5} is 5.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{30+16\sqrt{5}+10}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Multiply 2 and 5 to get 10.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{40+16\sqrt{5}}{4}\left(-\frac{1}{2}\right)\sqrt{5}
Add 30 and 10 to get 40.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{-\left(40+16\sqrt{5}\right)}{4\times 2}\sqrt{5}
Multiply \frac{40+16\sqrt{5}}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2}+\frac{-\left(40+16\sqrt{5}\right)\sqrt{5}}{4\times 2}
Express \frac{-\left(40+16\sqrt{5}\right)}{4\times 2}\sqrt{5} as a single fraction.
\frac{\left(40+16\sqrt{5}\right)\times 5-\left(40+16\sqrt{5}\right)\sqrt{5}}{4\times 2}
Since \frac{\left(40+16\sqrt{5}\right)\times 5}{4\times 2} and \frac{-\left(40+16\sqrt{5}\right)\sqrt{5}}{4\times 2} have the same denominator, add them by adding their numerators.
\frac{200+80\sqrt{5}-40\sqrt{5}-80}{4\times 2}
Do the multiplications in \left(40+16\sqrt{5}\right)\times 5-\left(40+16\sqrt{5}\right)\sqrt{5}.
\frac{120+40\sqrt{5}}{4\times 2}
Do the calculations in 200+80\sqrt{5}-40\sqrt{5}-80.
\frac{120+40\sqrt{5}}{8}
Expand 4\times 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}