Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

2a^{4}-\frac{3}{3}a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
Divide 6 by 3 to get 2.
2a^{4}-a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
Divide 3 by 3 to get 1.
2a^{4}-a^{3}+\frac{1}{3}a^{2}-2a^{4}=-a^{3}+\frac{1}{5}a^{2}
Subtract 2a^{4} from both sides.
-a^{3}+\frac{1}{3}a^{2}=-a^{3}+\frac{1}{5}a^{2}
Combine 2a^{4} and -2a^{4} to get 0.
-a^{3}+\frac{1}{3}a^{2}+a^{3}=\frac{1}{5}a^{2}
Add a^{3} to both sides.
\frac{1}{3}a^{2}=\frac{1}{5}a^{2}
Combine -a^{3} and a^{3} to get 0.
\frac{1}{3}a^{2}-\frac{1}{5}a^{2}=0
Subtract \frac{1}{5}a^{2} from both sides.
\frac{2}{15}a^{2}=0
Combine \frac{1}{3}a^{2} and -\frac{1}{5}a^{2} to get \frac{2}{15}a^{2}.
a^{2}=0
Multiply both sides by \frac{15}{2}, the reciprocal of \frac{2}{15}. Anything times zero gives zero.
a=0 a=0
Take the square root of both sides of the equation.
a=0
The equation is now solved. Solutions are the same.
2a^{4}-\frac{3}{3}a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
Divide 6 by 3 to get 2.
2a^{4}-a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
Divide 3 by 3 to get 1.
2a^{4}-a^{3}+\frac{1}{3}a^{2}-2a^{4}=-a^{3}+\frac{1}{5}a^{2}
Subtract 2a^{4} from both sides.
-a^{3}+\frac{1}{3}a^{2}=-a^{3}+\frac{1}{5}a^{2}
Combine 2a^{4} and -2a^{4} to get 0.
-a^{3}+\frac{1}{3}a^{2}+a^{3}=\frac{1}{5}a^{2}
Add a^{3} to both sides.
\frac{1}{3}a^{2}=\frac{1}{5}a^{2}
Combine -a^{3} and a^{3} to get 0.
\frac{1}{3}a^{2}-\frac{1}{5}a^{2}=0
Subtract \frac{1}{5}a^{2} from both sides.
\frac{2}{15}a^{2}=0
Combine \frac{1}{3}a^{2} and -\frac{1}{5}a^{2} to get \frac{2}{15}a^{2}.
a^{2}=0
Multiply both sides by \frac{15}{2}, the reciprocal of \frac{2}{15}. Anything times zero gives zero.
a=\frac{0±\sqrt{0^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±0}{2}
Take the square root of 0^{2}.
a=0
Divide 0 by 2.