Skip to main content
Differentiate w.r.t. t
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(t^{2}+8\right)\frac{\mathrm{d}}{\mathrm{d}t}(54t^{1})-54t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{2}+8)}{\left(t^{2}+8\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(t^{2}+8\right)\times 54t^{1-1}-54t^{1}\times 2t^{2-1}}{\left(t^{2}+8\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(t^{2}+8\right)\times 54t^{0}-54t^{1}\times 2t^{1}}{\left(t^{2}+8\right)^{2}}
Do the arithmetic.
\frac{t^{2}\times 54t^{0}+8\times 54t^{0}-54t^{1}\times 2t^{1}}{\left(t^{2}+8\right)^{2}}
Expand using distributive property.
\frac{54t^{2}+8\times 54t^{0}-54\times 2t^{1+1}}{\left(t^{2}+8\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{54t^{2}+432t^{0}-108t^{2}}{\left(t^{2}+8\right)^{2}}
Do the arithmetic.
\frac{\left(54-108\right)t^{2}+432t^{0}}{\left(t^{2}+8\right)^{2}}
Combine like terms.
\frac{-54t^{2}+432t^{0}}{\left(t^{2}+8\right)^{2}}
Subtract 108 from 54.
\frac{54\left(-t^{2}+8t^{0}\right)}{\left(t^{2}+8\right)^{2}}
Factor out 54.
\frac{54\left(-t^{2}+8\times 1\right)}{\left(t^{2}+8\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{54\left(-t^{2}+8\right)}{\left(t^{2}+8\right)^{2}}
For any term t, t\times 1=t and 1t=t.