Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\begin{array}{l}\phantom{138)}\phantom{1}\\138\overline{)483}\\\end{array}
Use the 1^{st} digit 4 from dividend 483
\begin{array}{l}\phantom{138)}0\phantom{2}\\138\overline{)483}\\\end{array}
Since 4 is less than 138, use the next digit 8 from dividend 483 and add 0 to the quotient
\begin{array}{l}\phantom{138)}0\phantom{3}\\138\overline{)483}\\\end{array}
Use the 2^{nd} digit 8 from dividend 483
\begin{array}{l}\phantom{138)}00\phantom{4}\\138\overline{)483}\\\end{array}
Since 48 is less than 138, use the next digit 3 from dividend 483 and add 0 to the quotient
\begin{array}{l}\phantom{138)}00\phantom{5}\\138\overline{)483}\\\end{array}
Use the 3^{rd} digit 3 from dividend 483
\begin{array}{l}\phantom{138)}003\phantom{6}\\138\overline{)483}\\\phantom{138)}\underline{\phantom{}414\phantom{}}\\\phantom{138)9}69\\\end{array}
Find closest multiple of 138 to 483. We see that 3 \times 138 = 414 is the nearest. Now subtract 414 from 483 to get reminder 69. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }69
Since 69 is less than 138, stop the division. The reminder is 69. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}