Evaluate
-\frac{20t^{2}}{t-5}
Differentiate w.r.t. t
\frac{20t\left(10-t\right)}{\left(t-5\right)^{2}}
Share
Copied to clipboard
\frac{4t}{\frac{5}{5t}-\frac{t}{5t}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t and 5 is 5t. Multiply \frac{1}{t} times \frac{5}{5}. Multiply \frac{1}{5} times \frac{t}{t}.
\frac{4t}{\frac{5-t}{5t}}
Since \frac{5}{5t} and \frac{t}{5t} have the same denominator, subtract them by subtracting their numerators.
\frac{4t\times 5t}{5-t}
Divide 4t by \frac{5-t}{5t} by multiplying 4t by the reciprocal of \frac{5-t}{5t}.
\frac{4t^{2}\times 5}{5-t}
Multiply t and t to get t^{2}.
\frac{20t^{2}}{5-t}
Multiply 4 and 5 to get 20.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{4t}{\frac{5}{5t}-\frac{t}{5t}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t and 5 is 5t. Multiply \frac{1}{t} times \frac{5}{5}. Multiply \frac{1}{5} times \frac{t}{t}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{4t}{\frac{5-t}{5t}})
Since \frac{5}{5t} and \frac{t}{5t} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{4t\times 5t}{5-t})
Divide 4t by \frac{5-t}{5t} by multiplying 4t by the reciprocal of \frac{5-t}{5t}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{4t^{2}\times 5}{5-t})
Multiply t and t to get t^{2}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{20t^{2}}{5-t})
Multiply 4 and 5 to get 20.
\frac{\left(-t^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}t}(20t^{2})-20t^{2}\frac{\mathrm{d}}{\mathrm{d}t}(-t^{1}+5)}{\left(-t^{1}+5\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(-t^{1}+5\right)\times 2\times 20t^{2-1}-20t^{2}\left(-1\right)t^{1-1}}{\left(-t^{1}+5\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(-t^{1}+5\right)\times 40t^{1}-20t^{2}\left(-1\right)t^{0}}{\left(-t^{1}+5\right)^{2}}
Do the arithmetic.
\frac{-t^{1}\times 40t^{1}+5\times 40t^{1}-20t^{2}\left(-1\right)t^{0}}{\left(-t^{1}+5\right)^{2}}
Expand using distributive property.
\frac{-40t^{1+1}+5\times 40t^{1}-20\left(-1\right)t^{2}}{\left(-t^{1}+5\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-40t^{2}+200t^{1}-\left(-20t^{2}\right)}{\left(-t^{1}+5\right)^{2}}
Do the arithmetic.
\frac{\left(-40-\left(-20\right)\right)t^{2}+200t^{1}}{\left(-t^{1}+5\right)^{2}}
Combine like terms.
\frac{-20t^{2}+200t^{1}}{\left(-t^{1}+5\right)^{2}}
Subtract -20 from -40.
\frac{20t\left(-t^{1}+10t^{0}\right)}{\left(-t^{1}+5\right)^{2}}
Factor out 20t.
\frac{20t\left(-t+10t^{0}\right)}{\left(-t+5\right)^{2}}
For any term t, t^{1}=t.
\frac{20t\left(-t+10\times 1\right)}{\left(-t+5\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{20t\left(-t+10\right)}{\left(-t+5\right)^{2}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}