Skip to main content
Solve for x
Tick mark Image
Solve for Δ
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\Delta x+\left(\Delta x\right)^{2}-7\Delta x=\Delta xx\Delta +x\Delta \left(-3\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x\Delta .
4\Delta x+\Delta ^{2}x^{2}-7\Delta x=\Delta xx\Delta +x\Delta \left(-3\right)
Expand \left(\Delta x\right)^{2}.
-3\Delta x+\Delta ^{2}x^{2}=\Delta xx\Delta +x\Delta \left(-3\right)
Combine 4\Delta x and -7\Delta x to get -3\Delta x.
-3\Delta x+\Delta ^{2}x^{2}=\Delta ^{2}xx+x\Delta \left(-3\right)
Multiply \Delta and \Delta to get \Delta ^{2}.
-3\Delta x+\Delta ^{2}x^{2}=\Delta ^{2}x^{2}+x\Delta \left(-3\right)
Multiply x and x to get x^{2}.
-3\Delta x+\Delta ^{2}x^{2}-\Delta ^{2}x^{2}=x\Delta \left(-3\right)
Subtract \Delta ^{2}x^{2} from both sides.
-3\Delta x=x\Delta \left(-3\right)
Combine \Delta ^{2}x^{2} and -\Delta ^{2}x^{2} to get 0.
-3\Delta x-x\Delta \left(-3\right)=0
Subtract x\Delta \left(-3\right) from both sides.
0=0
Combine -3\Delta x and -x\Delta \left(-3\right) to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 0
Variable x cannot be equal to 0.
4\Delta x+\left(\Delta x\right)^{2}-7\Delta x=\Delta xx\Delta +x\Delta \left(-3\right)
Variable \Delta cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x\Delta .
4\Delta x+\Delta ^{2}x^{2}-7\Delta x=\Delta xx\Delta +x\Delta \left(-3\right)
Expand \left(\Delta x\right)^{2}.
-3\Delta x+\Delta ^{2}x^{2}=\Delta xx\Delta +x\Delta \left(-3\right)
Combine 4\Delta x and -7\Delta x to get -3\Delta x.
-3\Delta x+\Delta ^{2}x^{2}=\Delta ^{2}xx+x\Delta \left(-3\right)
Multiply \Delta and \Delta to get \Delta ^{2}.
-3\Delta x+\Delta ^{2}x^{2}=\Delta ^{2}x^{2}+x\Delta \left(-3\right)
Multiply x and x to get x^{2}.
-3\Delta x+\Delta ^{2}x^{2}-\Delta ^{2}x^{2}=x\Delta \left(-3\right)
Subtract \Delta ^{2}x^{2} from both sides.
-3\Delta x=x\Delta \left(-3\right)
Combine \Delta ^{2}x^{2} and -\Delta ^{2}x^{2} to get 0.
-3\Delta x-x\Delta \left(-3\right)=0
Subtract x\Delta \left(-3\right) from both sides.
0=0
Combine -3\Delta x and -x\Delta \left(-3\right) to get 0.
\text{true}
Compare 0 and 0.
\Delta \in \mathrm{R}
This is true for any \Delta .
\Delta \in \mathrm{R}\setminus 0
Variable \Delta cannot be equal to 0.