Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)396}\\\end{array}
Use the 1^{st} digit 3 from dividend 396
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)396}\\\end{array}
Since 3 is less than 99, use the next digit 9 from dividend 396 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)396}\\\end{array}
Use the 2^{nd} digit 9 from dividend 396
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)396}\\\end{array}
Since 39 is less than 99, use the next digit 6 from dividend 396 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)396}\\\end{array}
Use the 3^{rd} digit 6 from dividend 396
\begin{array}{l}\phantom{99)}004\phantom{6}\\99\overline{)396}\\\phantom{99)}\underline{\phantom{}396\phantom{}}\\\phantom{99)999}0\\\end{array}
Find closest multiple of 99 to 396. We see that 4 \times 99 = 396 is the nearest. Now subtract 396 from 396 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 99, stop the division. The reminder is 0. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}