Solve for x
x=4y-\frac{8}{3}
y\neq \frac{1}{3}
Solve for y
y=\frac{x}{4}+\frac{2}{3}
x\neq -\frac{4}{3}
Graph
Share
Copied to clipboard
3x+4=-4\left(-3y+1\right)
Multiply both sides of the equation by 2\left(-3y+1\right).
3x+4=12y-4
Use the distributive property to multiply -4 by -3y+1.
3x=12y-4-4
Subtract 4 from both sides.
3x=12y-8
Subtract 4 from -4 to get -8.
\frac{3x}{3}=\frac{12y-8}{3}
Divide both sides by 3.
x=\frac{12y-8}{3}
Dividing by 3 undoes the multiplication by 3.
x=4y-\frac{8}{3}
Divide 12y-8 by 3.
3x+4=-4\left(-3y+1\right)
Variable y cannot be equal to \frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(-3y+1\right).
3x+4=12y-4
Use the distributive property to multiply -4 by -3y+1.
12y-4=3x+4
Swap sides so that all variable terms are on the left hand side.
12y=3x+4+4
Add 4 to both sides.
12y=3x+8
Add 4 and 4 to get 8.
\frac{12y}{12}=\frac{3x+8}{12}
Divide both sides by 12.
y=\frac{3x+8}{12}
Dividing by 12 undoes the multiplication by 12.
y=\frac{x}{4}+\frac{2}{3}
Divide 3x+8 by 12.
y=\frac{x}{4}+\frac{2}{3}\text{, }y\neq \frac{1}{3}
Variable y cannot be equal to \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}