Evaluate
\frac{6}{5}-\frac{147}{10m^{2}}
Expand
\frac{6}{5}-\frac{147}{10m^{2}}
Share
Copied to clipboard
\frac{3\left(2m-7\right)\left(2m+7\right)}{2m\left(-2m+7m\right)}
Cancel out m in both numerator and denominator.
\frac{3\left(2m-7\right)\left(2m+7\right)}{2m\times 5m}
Combine -2m and 7m to get 5m.
\frac{3\left(2m-7\right)\left(2m+7\right)}{10mm}
Multiply 2 and 5 to get 10.
\frac{3\left(2m-7\right)\left(2m+7\right)}{10m^{2}}
Multiply m and m to get m^{2}.
\frac{\left(6m-21\right)\left(2m+7\right)}{10m^{2}}
Use the distributive property to multiply 3 by 2m-7.
\frac{12m^{2}-147}{10m^{2}}
Use the distributive property to multiply 6m-21 by 2m+7 and combine like terms.
\frac{3\left(2m-7\right)\left(2m+7\right)}{2m\left(-2m+7m\right)}
Cancel out m in both numerator and denominator.
\frac{3\left(2m-7\right)\left(2m+7\right)}{2m\times 5m}
Combine -2m and 7m to get 5m.
\frac{3\left(2m-7\right)\left(2m+7\right)}{10mm}
Multiply 2 and 5 to get 10.
\frac{3\left(2m-7\right)\left(2m+7\right)}{10m^{2}}
Multiply m and m to get m^{2}.
\frac{\left(6m-21\right)\left(2m+7\right)}{10m^{2}}
Use the distributive property to multiply 3 by 2m-7.
\frac{12m^{2}-147}{10m^{2}}
Use the distributive property to multiply 6m-21 by 2m+7 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}