Evaluate
\frac{6\sqrt{2}+76}{289}\approx 0.292336614
Factor
\frac{2 {(3 \sqrt{2} + 38)}}{289} = 0.29233661375169057
Share
Copied to clipboard
\frac{3\left(38-12\sqrt{2}\right)}{\left(38+12\sqrt{2}\right)\left(38-12\sqrt{2}\right)}+\frac{5}{38-12\sqrt{2}}
Rationalize the denominator of \frac{3}{38+12\sqrt{2}} by multiplying numerator and denominator by 38-12\sqrt{2}.
\frac{3\left(38-12\sqrt{2}\right)}{38^{2}-\left(12\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Consider \left(38+12\sqrt{2}\right)\left(38-12\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1444-\left(12\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Calculate 38 to the power of 2 and get 1444.
\frac{3\left(38-12\sqrt{2}\right)}{1444-12^{2}\left(\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Expand \left(12\sqrt{2}\right)^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1444-144\left(\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Calculate 12 to the power of 2 and get 144.
\frac{3\left(38-12\sqrt{2}\right)}{1444-144\times 2}+\frac{5}{38-12\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{3\left(38-12\sqrt{2}\right)}{1444-288}+\frac{5}{38-12\sqrt{2}}
Multiply 144 and 2 to get 288.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5}{38-12\sqrt{2}}
Subtract 288 from 1444 to get 1156.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{\left(38-12\sqrt{2}\right)\left(38+12\sqrt{2}\right)}
Rationalize the denominator of \frac{5}{38-12\sqrt{2}} by multiplying numerator and denominator by 38+12\sqrt{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{38^{2}-\left(-12\sqrt{2}\right)^{2}}
Consider \left(38-12\sqrt{2}\right)\left(38+12\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-\left(-12\sqrt{2}\right)^{2}}
Calculate 38 to the power of 2 and get 1444.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-\left(-12\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-12\sqrt{2}\right)^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-144\left(\sqrt{2}\right)^{2}}
Calculate -12 to the power of 2 and get 144.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-144\times 2}
The square of \sqrt{2} is 2.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-288}
Multiply 144 and 2 to get 288.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1156}
Subtract 288 from 1444 to get 1156.
\frac{3\left(38-12\sqrt{2}\right)+5\left(38+12\sqrt{2}\right)}{1156}
Since \frac{3\left(38-12\sqrt{2}\right)}{1156} and \frac{5\left(38+12\sqrt{2}\right)}{1156} have the same denominator, add them by adding their numerators.
\frac{114-36\sqrt{2}+190+60\sqrt{2}}{1156}
Do the multiplications in 3\left(38-12\sqrt{2}\right)+5\left(38+12\sqrt{2}\right).
\frac{304+24\sqrt{2}}{1156}
Do the calculations in 114-36\sqrt{2}+190+60\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}