Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(38-12\sqrt{2}\right)}{\left(38+12\sqrt{2}\right)\left(38-12\sqrt{2}\right)}+\frac{5}{38-12\sqrt{2}}
Rationalize the denominator of \frac{3}{38+12\sqrt{2}} by multiplying numerator and denominator by 38-12\sqrt{2}.
\frac{3\left(38-12\sqrt{2}\right)}{38^{2}-\left(12\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Consider \left(38+12\sqrt{2}\right)\left(38-12\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1444-\left(12\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Calculate 38 to the power of 2 and get 1444.
\frac{3\left(38-12\sqrt{2}\right)}{1444-12^{2}\left(\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Expand \left(12\sqrt{2}\right)^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1444-144\left(\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Calculate 12 to the power of 2 and get 144.
\frac{3\left(38-12\sqrt{2}\right)}{1444-144\times 2}+\frac{5}{38-12\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{3\left(38-12\sqrt{2}\right)}{1444-288}+\frac{5}{38-12\sqrt{2}}
Multiply 144 and 2 to get 288.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5}{38-12\sqrt{2}}
Subtract 288 from 1444 to get 1156.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{\left(38-12\sqrt{2}\right)\left(38+12\sqrt{2}\right)}
Rationalize the denominator of \frac{5}{38-12\sqrt{2}} by multiplying numerator and denominator by 38+12\sqrt{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{38^{2}-\left(-12\sqrt{2}\right)^{2}}
Consider \left(38-12\sqrt{2}\right)\left(38+12\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-\left(-12\sqrt{2}\right)^{2}}
Calculate 38 to the power of 2 and get 1444.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-\left(-12\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-12\sqrt{2}\right)^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-144\left(\sqrt{2}\right)^{2}}
Calculate -12 to the power of 2 and get 144.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-144\times 2}
The square of \sqrt{2} is 2.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-288}
Multiply 144 and 2 to get 288.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1156}
Subtract 288 from 1444 to get 1156.
\frac{3\left(38-12\sqrt{2}\right)+5\left(38+12\sqrt{2}\right)}{1156}
Since \frac{3\left(38-12\sqrt{2}\right)}{1156} and \frac{5\left(38+12\sqrt{2}\right)}{1156} have the same denominator, add them by adding their numerators.
\frac{114-36\sqrt{2}+190+60\sqrt{2}}{1156}
Do the multiplications in 3\left(38-12\sqrt{2}\right)+5\left(38+12\sqrt{2}\right).
\frac{304+24\sqrt{2}}{1156}
Do the calculations in 114-36\sqrt{2}+190+60\sqrt{2}.