Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\left(x-1\right)\left(x+1\right)}{4\left(x^{2}+1\right)}\times \frac{x^{3}+x}{x^{2}-x}
Factor the expressions that are not already factored in \frac{2x^{2}-2}{4x^{2}+4}.
\frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)}\times \frac{x^{3}+x}{x^{2}-x}
Cancel out 2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)}\times \frac{x\left(x^{2}+1\right)}{x\left(x-1\right)}
Factor the expressions that are not already factored in \frac{x^{3}+x}{x^{2}-x}.
\frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)}\times \frac{x^{2}+1}{x-1}
Cancel out x in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{2\left(x^{2}+1\right)\left(x-1\right)}
Multiply \frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)} times \frac{x^{2}+1}{x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{x+1}{2}
Cancel out \left(x-1\right)\left(x^{2}+1\right) in both numerator and denominator.
\frac{2\left(x-1\right)\left(x+1\right)}{4\left(x^{2}+1\right)}\times \frac{x^{3}+x}{x^{2}-x}
Factor the expressions that are not already factored in \frac{2x^{2}-2}{4x^{2}+4}.
\frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)}\times \frac{x^{3}+x}{x^{2}-x}
Cancel out 2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)}\times \frac{x\left(x^{2}+1\right)}{x\left(x-1\right)}
Factor the expressions that are not already factored in \frac{x^{3}+x}{x^{2}-x}.
\frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)}\times \frac{x^{2}+1}{x-1}
Cancel out x in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{2\left(x^{2}+1\right)\left(x-1\right)}
Multiply \frac{\left(x-1\right)\left(x+1\right)}{2\left(x^{2}+1\right)} times \frac{x^{2}+1}{x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{x+1}{2}
Cancel out \left(x-1\right)\left(x^{2}+1\right) in both numerator and denominator.