Verify
true
Share
Copied to clipboard
\frac{2\times 1}{9\times 8}+\frac{3}{9}\times \frac{2}{8}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Multiply \frac{2}{9} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{72}+\frac{3}{9}\times \frac{2}{8}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Do the multiplications in the fraction \frac{2\times 1}{9\times 8}.
\frac{1}{36}+\frac{3}{9}\times \frac{2}{8}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Reduce the fraction \frac{2}{72} to lowest terms by extracting and canceling out 2.
\frac{1}{36}+\frac{1}{3}\times \frac{2}{8}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{36}+\frac{1}{3}\times \frac{1}{4}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{36}+\frac{1\times 1}{3\times 4}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Multiply \frac{1}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{36}+\frac{1}{12}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Do the multiplications in the fraction \frac{1\times 1}{3\times 4}.
\frac{1}{36}+\frac{3}{36}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Least common multiple of 36 and 12 is 36. Convert \frac{1}{36} and \frac{1}{12} to fractions with denominator 36.
\frac{1+3}{36}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Since \frac{1}{36} and \frac{3}{36} have the same denominator, add them by adding their numerators.
\frac{4}{36}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Add 1 and 3 to get 4.
\frac{1}{9}+\frac{4}{9}\times \frac{3}{8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Reduce the fraction \frac{4}{36} to lowest terms by extracting and canceling out 4.
\frac{1}{9}+\frac{4\times 3}{9\times 8}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Multiply \frac{4}{9} times \frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{9}+\frac{12}{72}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Do the multiplications in the fraction \frac{4\times 3}{9\times 8}.
\frac{1}{9}+\frac{1}{6}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Reduce the fraction \frac{12}{72} to lowest terms by extracting and canceling out 12.
\frac{2}{18}+\frac{3}{18}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Least common multiple of 9 and 6 is 18. Convert \frac{1}{9} and \frac{1}{6} to fractions with denominator 18.
\frac{2+3}{18}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Since \frac{2}{18} and \frac{3}{18} have the same denominator, add them by adding their numerators.
\frac{5}{18}=\frac{2+6+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Add 2 and 3 to get 5.
\frac{5}{18}=\frac{8+12}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Add 2 and 6 to get 8.
\frac{5}{18}=\frac{20}{72}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Add 8 and 12 to get 20.
\frac{5}{18}=\frac{5}{18}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Reduce the fraction \frac{20}{72} to lowest terms by extracting and canceling out 4.
\text{true}\text{ and }\frac{2+6+12}{72}=\frac{5}{18}
Compare \frac{5}{18} and \frac{5}{18}.
\text{true}\text{ and }\frac{8+12}{72}=\frac{5}{18}
Add 2 and 6 to get 8.
\text{true}\text{ and }\frac{20}{72}=\frac{5}{18}
Add 8 and 12 to get 20.
\text{true}\text{ and }\frac{5}{18}=\frac{5}{18}
Reduce the fraction \frac{20}{72} to lowest terms by extracting and canceling out 4.
\text{true}\text{ and }\text{true}
Compare \frac{5}{18} and \frac{5}{18}.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}