Evaluate
3\left(\sqrt{2}+\sqrt{6}\right)\approx 11.591109915
Factor
3 {(\sqrt{2} + \sqrt{6})} = 11.591109915
Share
Copied to clipboard
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{12\sqrt{3}+24}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Subtract 6 from 2 to get -4.
\frac{12\sqrt{3}\sqrt{2}-12\sqrt{3}\sqrt{6}+24\sqrt{2}-24\sqrt{6}}{-4}
Apply the distributive property by multiplying each term of 12\sqrt{3}+24 by each term of \sqrt{2}-\sqrt{6}.
\frac{12\sqrt{6}-12\sqrt{3}\sqrt{6}+24\sqrt{2}-24\sqrt{6}}{-4}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{12\sqrt{6}-12\sqrt{3}\sqrt{3}\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{12\sqrt{6}-12\times 3\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{12\sqrt{6}-36\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
Multiply -12 and 3 to get -36.
\frac{12\sqrt{6}-12\sqrt{2}-24\sqrt{6}}{-4}
Combine -36\sqrt{2} and 24\sqrt{2} to get -12\sqrt{2}.
\frac{-12\sqrt{6}-12\sqrt{2}}{-4}
Combine 12\sqrt{6} and -24\sqrt{6} to get -12\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}