Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{12\sqrt{3}+24}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Subtract 6 from 2 to get -4.
\frac{12\sqrt{3}\sqrt{2}-12\sqrt{3}\sqrt{6}+24\sqrt{2}-24\sqrt{6}}{-4}
Apply the distributive property by multiplying each term of 12\sqrt{3}+24 by each term of \sqrt{2}-\sqrt{6}.
\frac{12\sqrt{6}-12\sqrt{3}\sqrt{6}+24\sqrt{2}-24\sqrt{6}}{-4}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{12\sqrt{6}-12\sqrt{3}\sqrt{3}\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{12\sqrt{6}-12\times 3\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{12\sqrt{6}-36\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
Multiply -12 and 3 to get -36.
\frac{12\sqrt{6}-12\sqrt{2}-24\sqrt{6}}{-4}
Combine -36\sqrt{2} and 24\sqrt{2} to get -12\sqrt{2}.
\frac{-12\sqrt{6}-12\sqrt{2}}{-4}
Combine 12\sqrt{6} and -24\sqrt{6} to get -12\sqrt{6}.