Evaluate
-\frac{771\sqrt{782}}{391}\approx -55.141807423
Share
Copied to clipboard
\frac{-771}{\sqrt{\frac{107}{2}+\frac{142}{1}}}
Subtract 1961 from 1190 to get -771.
\frac{-771}{\sqrt{\frac{107}{2}+142}}
Anything divided by one gives itself.
\frac{-771}{\sqrt{\frac{107}{2}+\frac{284}{2}}}
Convert 142 to fraction \frac{284}{2}.
\frac{-771}{\sqrt{\frac{107+284}{2}}}
Since \frac{107}{2} and \frac{284}{2} have the same denominator, add them by adding their numerators.
\frac{-771}{\sqrt{\frac{391}{2}}}
Add 107 and 284 to get 391.
\frac{-771}{\frac{\sqrt{391}}{\sqrt{2}}}
Rewrite the square root of the division \sqrt{\frac{391}{2}} as the division of square roots \frac{\sqrt{391}}{\sqrt{2}}.
\frac{-771}{\frac{\sqrt{391}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{391}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-771}{\frac{\sqrt{391}\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{-771}{\frac{\sqrt{782}}{2}}
To multiply \sqrt{391} and \sqrt{2}, multiply the numbers under the square root.
\frac{-771\times 2}{\sqrt{782}}
Divide -771 by \frac{\sqrt{782}}{2} by multiplying -771 by the reciprocal of \frac{\sqrt{782}}{2}.
\frac{-771\times 2\sqrt{782}}{\left(\sqrt{782}\right)^{2}}
Rationalize the denominator of \frac{-771\times 2}{\sqrt{782}} by multiplying numerator and denominator by \sqrt{782}.
\frac{-771\times 2\sqrt{782}}{782}
The square of \sqrt{782} is 782.
\frac{-1542\sqrt{782}}{782}
Multiply -771 and 2 to get -1542.
-\frac{771}{391}\sqrt{782}
Divide -1542\sqrt{782} by 782 to get -\frac{771}{391}\sqrt{782}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}