Evaluate
\frac{1}{2000}=0.0005
Factor
\frac{1}{2 ^ {4} \cdot 5 ^ {3}} = 0.0005
Share
Copied to clipboard
\frac{\frac{1}{100}\sqrt{3}}{\sqrt{27}+\sqrt{48}+\sqrt{507}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{1}{100}\sqrt{3}}{3\sqrt{3}+\sqrt{48}+\sqrt{507}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\frac{1}{100}\sqrt{3}}{3\sqrt{3}+4\sqrt{3}+\sqrt{507}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\frac{1}{100}\sqrt{3}}{7\sqrt{3}+\sqrt{507}}
Combine 3\sqrt{3} and 4\sqrt{3} to get 7\sqrt{3}.
\frac{\frac{1}{100}\sqrt{3}}{7\sqrt{3}+13\sqrt{3}}
Factor 507=13^{2}\times 3. Rewrite the square root of the product \sqrt{13^{2}\times 3} as the product of square roots \sqrt{13^{2}}\sqrt{3}. Take the square root of 13^{2}.
\frac{\frac{1}{100}\sqrt{3}}{20\sqrt{3}}
Combine 7\sqrt{3} and 13\sqrt{3} to get 20\sqrt{3}.
\frac{\frac{1}{100}}{20}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{1}{100\times 20}
Express \frac{\frac{1}{100}}{20} as a single fraction.
\frac{1}{2000}
Multiply 100 and 20 to get 2000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}