Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{\left(1+\sqrt{5}\right)^{2}}{4^{2}}\right)
To raise \frac{1+\sqrt{5}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}}{4^{2}}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{5}\right)^{2}.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{1+2\sqrt{5}+5}{4^{2}}\right)
The square of \sqrt{5} is 5.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{6+2\sqrt{5}}{4^{2}}\right)
Add 1 and 5 to get 6.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{6+2\sqrt{5}}{16}\right)
Calculate 4 to the power of 2 and get 16.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(\frac{3\times 16}{16}-\frac{6+2\sqrt{5}}{16}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{16}{16}.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\times \frac{3\times 16-\left(6+2\sqrt{5}\right)}{16}
Since \frac{3\times 16}{16} and \frac{6+2\sqrt{5}}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\times \frac{48-6-2\sqrt{5}}{16}
Do the multiplications in 3\times 16-\left(6+2\sqrt{5}\right).
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\times \frac{42-2\sqrt{5}}{16}
Do the calculations in 48-6-2\sqrt{5}.
\frac{1+\sqrt{5}}{4\times 4}\times \frac{42-2\sqrt{5}}{16}
Multiply \frac{1}{4} times \frac{1+\sqrt{5}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1+\sqrt{5}\right)\left(42-2\sqrt{5}\right)}{4\times 4\times 16}
Multiply \frac{1+\sqrt{5}}{4\times 4} times \frac{42-2\sqrt{5}}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1+\sqrt{5}\right)\left(42-2\sqrt{5}\right)}{16\times 16}
Multiply 4 and 4 to get 16.
\frac{\left(1+\sqrt{5}\right)\left(42-2\sqrt{5}\right)}{256}
Multiply 16 and 16 to get 256.
\frac{42+40\sqrt{5}-2\left(\sqrt{5}\right)^{2}}{256}
Use the distributive property to multiply 1+\sqrt{5} by 42-2\sqrt{5} and combine like terms.
\frac{42+40\sqrt{5}-2\times 5}{256}
The square of \sqrt{5} is 5.
\frac{42+40\sqrt{5}-10}{256}
Multiply -2 and 5 to get -10.
\frac{32+40\sqrt{5}}{256}
Subtract 10 from 42 to get 32.