Evaluate
\frac{5\sqrt{5}+4}{32}\approx 0.474385621
Factor
\frac{5 \sqrt{5} + 4}{32} = 0.47438562148434216
Share
Copied to clipboard
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{\left(1+\sqrt{5}\right)^{2}}{4^{2}}\right)
To raise \frac{1+\sqrt{5}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}}{4^{2}}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{5}\right)^{2}.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{1+2\sqrt{5}+5}{4^{2}}\right)
The square of \sqrt{5} is 5.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{6+2\sqrt{5}}{4^{2}}\right)
Add 1 and 5 to get 6.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(3-\frac{6+2\sqrt{5}}{16}\right)
Calculate 4 to the power of 2 and get 16.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\left(\frac{3\times 16}{16}-\frac{6+2\sqrt{5}}{16}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{16}{16}.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\times \frac{3\times 16-\left(6+2\sqrt{5}\right)}{16}
Since \frac{3\times 16}{16} and \frac{6+2\sqrt{5}}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\times \frac{48-6-2\sqrt{5}}{16}
Do the multiplications in 3\times 16-\left(6+2\sqrt{5}\right).
\frac{1}{4}\times \frac{1+\sqrt{5}}{4}\times \frac{42-2\sqrt{5}}{16}
Do the calculations in 48-6-2\sqrt{5}.
\frac{1+\sqrt{5}}{4\times 4}\times \frac{42-2\sqrt{5}}{16}
Multiply \frac{1}{4} times \frac{1+\sqrt{5}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1+\sqrt{5}\right)\left(42-2\sqrt{5}\right)}{4\times 4\times 16}
Multiply \frac{1+\sqrt{5}}{4\times 4} times \frac{42-2\sqrt{5}}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1+\sqrt{5}\right)\left(42-2\sqrt{5}\right)}{16\times 16}
Multiply 4 and 4 to get 16.
\frac{\left(1+\sqrt{5}\right)\left(42-2\sqrt{5}\right)}{256}
Multiply 16 and 16 to get 256.
\frac{42+40\sqrt{5}-2\left(\sqrt{5}\right)^{2}}{256}
Use the distributive property to multiply 1+\sqrt{5} by 42-2\sqrt{5} and combine like terms.
\frac{42+40\sqrt{5}-2\times 5}{256}
The square of \sqrt{5} is 5.
\frac{42+40\sqrt{5}-10}{256}
Multiply -2 and 5 to get -10.
\frac{32+40\sqrt{5}}{256}
Subtract 10 from 42 to get 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}