Verify
false
Share
Copied to clipboard
\frac{8}{104}+\frac{13}{104}=\frac{7}{16}
Least common multiple of 13 and 8 is 104. Convert \frac{1}{13} and \frac{1}{8} to fractions with denominator 104.
\frac{8+13}{104}=\frac{7}{16}
Since \frac{8}{104} and \frac{13}{104} have the same denominator, add them by adding their numerators.
\frac{21}{104}=\frac{7}{16}
Add 8 and 13 to get 21.
\frac{42}{208}=\frac{91}{208}
Least common multiple of 104 and 16 is 208. Convert \frac{21}{104} and \frac{7}{16} to fractions with denominator 208.
\text{false}
Compare \frac{42}{208} and \frac{91}{208}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}