Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{5}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right)
To raise \frac{1+\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{\left(1-\sqrt{5}\right)^{2}}{2^{2}}\right)
To raise \frac{1-\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{1-2\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{5}\right)^{2}.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{1-2\sqrt{5}+5}{2^{2}}\right)
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}\right)
Add 1 and 5 to get 6.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}\right)
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\sqrt{5}}{5}\times \frac{\left(1+\sqrt{5}\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Since \frac{\left(1+\sqrt{5}\right)^{2}}{4} and \frac{6-2\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{5}}{5}\times \frac{1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-6+2\sqrt{5}}{4}
Do the multiplications in \left(1+\sqrt{5}\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{\sqrt{5}}{5}\times \frac{4\sqrt{5}}{4}
Do the calculations in 1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-6+2\sqrt{5}.
\frac{\sqrt{5}}{5}\sqrt{5}
Cancel out 4 and 4.
\frac{\sqrt{5}\sqrt{5}}{5}
Express \frac{\sqrt{5}}{5}\sqrt{5} as a single fraction.
\frac{5}{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
1
Divide 5 by 5 to get 1.