Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{5}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right)
To raise \frac{1+\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{\left(1-\sqrt{5}\right)^{2}}{2^{2}}\right)
To raise \frac{1-\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{1-2\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{5}\right)^{2}.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{1-2\sqrt{5}+5}{2^{2}}\right)
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}\right)
Add 1 and 5 to get 6.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}\right)
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{5}}{5}\left(\frac{\left(1+\sqrt{5}\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\sqrt{5}}{5}\times \frac{\left(1+\sqrt{5}\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Since \frac{\left(1+\sqrt{5}\right)^{2}}{4} and \frac{6-2\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{5}}{5}\times \frac{1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-6+2\sqrt{5}}{4}
Do the multiplications in \left(1+\sqrt{5}\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{\sqrt{5}}{5}\times \frac{4\sqrt{5}}{4}
Do the calculations in 1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-6+2\sqrt{5}.
\frac{\sqrt{5}}{5}\sqrt{5}
Cancel out 4 and 4.
\frac{\sqrt{5}\sqrt{5}}{5}
Express \frac{\sqrt{5}}{5}\sqrt{5} as a single fraction.
\frac{5}{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
1
Divide 5 by 5 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}