Evaluate
\frac{6640625\pi ^{2}}{1206114}\approx 54.340088686
Expand
\frac{6640625 \pi ^ {2}}{1206114} = 54.34008868646249
Share
Copied to clipboard
\frac{0.425\times 50000\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Cancel out 4 in both numerator and denominator.
\frac{21250\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 0.425 and 50000 to get 21250.
\frac{21250\pi ^{2}}{3\left(1-0.09\right)}\times \left(\frac{1}{37.6}\right)^{2}
Calculate 0.3 to the power of 2 and get 0.09.
\frac{21250\pi ^{2}}{3\times 0.91}\times \left(\frac{1}{37.6}\right)^{2}
Subtract 0.09 from 1 to get 0.91.
\frac{21250\pi ^{2}}{2.73}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 3 and 0.91 to get 2.73.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{1}{37.6}\right)^{2}
Divide 21250\pi ^{2} by 2.73 to get \frac{2125000}{273}\pi ^{2}.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{10}{376}\right)^{2}
Expand \frac{1}{37.6} by multiplying both numerator and the denominator by 10.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{5}{188}\right)^{2}
Reduce the fraction \frac{10}{376} to lowest terms by extracting and canceling out 2.
\frac{2125000}{273}\pi ^{2}\times \frac{25}{35344}
Calculate \frac{5}{188} to the power of 2 and get \frac{25}{35344}.
\frac{6640625}{1206114}\pi ^{2}
Multiply \frac{2125000}{273} and \frac{25}{35344} to get \frac{6640625}{1206114}.
\frac{0.425\times 50000\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Cancel out 4 in both numerator and denominator.
\frac{21250\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 0.425 and 50000 to get 21250.
\frac{21250\pi ^{2}}{3\left(1-0.09\right)}\times \left(\frac{1}{37.6}\right)^{2}
Calculate 0.3 to the power of 2 and get 0.09.
\frac{21250\pi ^{2}}{3\times 0.91}\times \left(\frac{1}{37.6}\right)^{2}
Subtract 0.09 from 1 to get 0.91.
\frac{21250\pi ^{2}}{2.73}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 3 and 0.91 to get 2.73.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{1}{37.6}\right)^{2}
Divide 21250\pi ^{2} by 2.73 to get \frac{2125000}{273}\pi ^{2}.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{10}{376}\right)^{2}
Expand \frac{1}{37.6} by multiplying both numerator and the denominator by 10.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{5}{188}\right)^{2}
Reduce the fraction \frac{10}{376} to lowest terms by extracting and canceling out 2.
\frac{2125000}{273}\pi ^{2}\times \frac{25}{35344}
Calculate \frac{5}{188} to the power of 2 and get \frac{25}{35344}.
\frac{6640625}{1206114}\pi ^{2}
Multiply \frac{2125000}{273} and \frac{25}{35344} to get \frac{6640625}{1206114}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}