Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{0.425\times 50000\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Cancel out 4 in both numerator and denominator.
\frac{21250\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 0.425 and 50000 to get 21250.
\frac{21250\pi ^{2}}{3\left(1-0.09\right)}\times \left(\frac{1}{37.6}\right)^{2}
Calculate 0.3 to the power of 2 and get 0.09.
\frac{21250\pi ^{2}}{3\times 0.91}\times \left(\frac{1}{37.6}\right)^{2}
Subtract 0.09 from 1 to get 0.91.
\frac{21250\pi ^{2}}{2.73}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 3 and 0.91 to get 2.73.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{1}{37.6}\right)^{2}
Divide 21250\pi ^{2} by 2.73 to get \frac{2125000}{273}\pi ^{2}.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{10}{376}\right)^{2}
Expand \frac{1}{37.6} by multiplying both numerator and the denominator by 10.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{5}{188}\right)^{2}
Reduce the fraction \frac{10}{376} to lowest terms by extracting and canceling out 2.
\frac{2125000}{273}\pi ^{2}\times \frac{25}{35344}
Calculate \frac{5}{188} to the power of 2 and get \frac{25}{35344}.
\frac{6640625}{1206114}\pi ^{2}
Multiply \frac{2125000}{273} and \frac{25}{35344} to get \frac{6640625}{1206114}.
\frac{0.425\times 50000\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Cancel out 4 in both numerator and denominator.
\frac{21250\pi ^{2}}{3\left(1-0.3^{2}\right)}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 0.425 and 50000 to get 21250.
\frac{21250\pi ^{2}}{3\left(1-0.09\right)}\times \left(\frac{1}{37.6}\right)^{2}
Calculate 0.3 to the power of 2 and get 0.09.
\frac{21250\pi ^{2}}{3\times 0.91}\times \left(\frac{1}{37.6}\right)^{2}
Subtract 0.09 from 1 to get 0.91.
\frac{21250\pi ^{2}}{2.73}\times \left(\frac{1}{37.6}\right)^{2}
Multiply 3 and 0.91 to get 2.73.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{1}{37.6}\right)^{2}
Divide 21250\pi ^{2} by 2.73 to get \frac{2125000}{273}\pi ^{2}.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{10}{376}\right)^{2}
Expand \frac{1}{37.6} by multiplying both numerator and the denominator by 10.
\frac{2125000}{273}\pi ^{2}\times \left(\frac{5}{188}\right)^{2}
Reduce the fraction \frac{10}{376} to lowest terms by extracting and canceling out 2.
\frac{2125000}{273}\pi ^{2}\times \frac{25}{35344}
Calculate \frac{5}{188} to the power of 2 and get \frac{25}{35344}.
\frac{6640625}{1206114}\pi ^{2}
Multiply \frac{2125000}{273} and \frac{25}{35344} to get \frac{6640625}{1206114}.