Evaluate
2062500x
Differentiate w.r.t. x
2062500
Graph
Share
Copied to clipboard
\frac{330ton\times \frac{1000kg}{ton}}{160g\times \frac{1kg}{1000g}}x
Cancel out 1 in both numerator and denominator.
\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{1kg}{1000g}}x
Express 330\times \frac{1000kg}{ton} as a single fraction.
\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{k}{1000}}x
Cancel out g in both numerator and denominator.
\frac{\frac{330\times 1000kg}{ton}ton}{\frac{160k}{1000}g}x
Express 160\times \frac{k}{1000} as a single fraction.
\frac{\frac{330000kg}{ton}ton}{\frac{160k}{1000}g}x
Multiply 330 and 1000 to get 330000.
\frac{\frac{330000kgt}{ton}on}{\frac{160k}{1000}g}x
Express \frac{330000kg}{ton}t as a single fraction.
\frac{\frac{330000gk}{no}on}{\frac{160k}{1000}g}x
Cancel out t in both numerator and denominator.
\frac{\frac{330000gko}{no}n}{\frac{160k}{1000}g}x
Express \frac{330000gk}{no}o as a single fraction.
\frac{\frac{330000gk}{n}n}{\frac{160k}{1000}g}x
Cancel out o in both numerator and denominator.
\frac{330000gk}{\frac{160k}{1000}g}x
Cancel out n and n.
\frac{330000gk}{\frac{4}{25}kg}x
Divide 160k by 1000 to get \frac{4}{25}k.
\frac{330000}{\frac{4}{25}}x
Cancel out gk in both numerator and denominator.
330000\times \frac{25}{4}x
Divide 330000 by \frac{4}{25} by multiplying 330000 by the reciprocal of \frac{4}{25}.
\frac{330000\times 25}{4}x
Express 330000\times \frac{25}{4} as a single fraction.
\frac{8250000}{4}x
Multiply 330000 and 25 to get 8250000.
2062500x
Divide 8250000 by 4 to get 2062500.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330ton\times \frac{1000kg}{ton}}{160g\times \frac{1kg}{1000g}}x)
Cancel out 1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{1kg}{1000g}}x)
Express 330\times \frac{1000kg}{ton} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{k}{1000}}x)
Cancel out g in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330\times 1000kg}{ton}ton}{\frac{160k}{1000}g}x)
Express 160\times \frac{k}{1000} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000kg}{ton}ton}{\frac{160k}{1000}g}x)
Multiply 330 and 1000 to get 330000.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000kgt}{ton}on}{\frac{160k}{1000}g}x)
Express \frac{330000kg}{ton}t as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000gk}{no}on}{\frac{160k}{1000}g}x)
Cancel out t in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000gko}{no}n}{\frac{160k}{1000}g}x)
Express \frac{330000gk}{no}o as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000gk}{n}n}{\frac{160k}{1000}g}x)
Cancel out o in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000gk}{\frac{160k}{1000}g}x)
Cancel out n and n.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000gk}{\frac{4}{25}kg}x)
Divide 160k by 1000 to get \frac{4}{25}k.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000}{\frac{4}{25}}x)
Cancel out gk in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(330000\times \frac{25}{4}x)
Divide 330000 by \frac{4}{25} by multiplying 330000 by the reciprocal of \frac{4}{25}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000\times 25}{4}x)
Express 330000\times \frac{25}{4} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8250000}{4}x)
Multiply 330000 and 25 to get 8250000.
\frac{\mathrm{d}}{\mathrm{d}x}(2062500x)
Divide 8250000 by 4 to get 2062500.
2062500x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
2062500x^{0}
Subtract 1 from 1.
2062500\times 1
For any term t except 0, t^{0}=1.
2062500
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}