Evaluate
\frac{33x}{16}
Differentiate w.r.t. x
\frac{33}{16} = 2\frac{1}{16} = 2.0625
Graph
Share
Copied to clipboard
\frac{330ton\times \frac{gk}{not}}{160g\times \frac{1kg}{1g}}x
Cancel out 1 in both numerator and denominator.
\frac{\frac{330gk}{not}ton}{160g\times \frac{1kg}{1g}}x
Express 330\times \frac{gk}{not} as a single fraction.
\frac{\frac{330gk}{not}ton}{160gk}x
Cancel out g in both numerator and denominator.
\frac{\frac{330gkt}{not}on}{160gk}x
Express \frac{330gk}{not}t as a single fraction.
\frac{\frac{330gk}{no}on}{160gk}x
Cancel out t in both numerator and denominator.
\frac{\frac{330gko}{no}n}{160gk}x
Express \frac{330gk}{no}o as a single fraction.
\frac{\frac{330gk}{n}n}{160gk}x
Cancel out o in both numerator and denominator.
\frac{330gk}{160gk}x
Cancel out n and n.
\frac{33}{16}x
Cancel out 10gk in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330ton\times \frac{gk}{not}}{160g\times \frac{1kg}{1g}}x)
Cancel out 1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{not}ton}{160g\times \frac{1kg}{1g}}x)
Express 330\times \frac{gk}{not} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{not}ton}{160gk}x)
Cancel out g in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gkt}{not}on}{160gk}x)
Express \frac{330gk}{not}t as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{no}on}{160gk}x)
Cancel out t in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gko}{no}n}{160gk}x)
Express \frac{330gk}{no}o as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{n}n}{160gk}x)
Cancel out o in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330gk}{160gk}x)
Cancel out n and n.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33}{16}x)
Cancel out 10gk in both numerator and denominator.
\frac{33}{16}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{33}{16}x^{0}
Subtract 1 from 1.
\frac{33}{16}\times 1
For any term t except 0, t^{0}=1.
\frac{33}{16}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}