Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i+3\left(1-i\right)}{2+i}
Calculate 1+i to the power of 2 and get 2i.
\frac{2i+\left(3-3i\right)}{2+i}
Multiply 3 and 1-i to get 3-3i.
\frac{3-i}{2+i}
Add 2i and 3-3i to get 3-i.
\frac{\left(3-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{5-5i}{5}
Do the multiplications in \frac{\left(3-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
1-i
Divide 5-5i by 5 to get 1-i.
Re(\frac{2i+3\left(1-i\right)}{2+i})
Calculate 1+i to the power of 2 and get 2i.
Re(\frac{2i+\left(3-3i\right)}{2+i})
Multiply 3 and 1-i to get 3-3i.
Re(\frac{3-i}{2+i})
Add 2i and 3-3i to get 3-i.
Re(\frac{\left(3-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{3-i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{5-5i}{5})
Do the multiplications in \frac{\left(3-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
Re(1-i)
Divide 5-5i by 5 to get 1-i.
1
The real part of 1-i is 1.