Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+1}{\left(1-i\right)\left(1-i\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2}{\left(1-i\right)\left(1-i\right)^{0}}
Add 1 and 1 to get 2.
\frac{2}{\left(1-i\right)^{1}}
To multiply powers of the same base, add their exponents. Add 1 and 0 to get 1.
\frac{2}{1-i}
Calculate 1-i to the power of 1 and get 1-i.
\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{2\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 1+2i}{2}
Multiply 2 times 1+i.
\frac{2+2i}{2}
Do the multiplications in 2\times 1+2i.
1+i
Divide 2+2i by 2 to get 1+i.
Re(\frac{1+1}{\left(1-i\right)\left(1-i\right)^{0}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Re(\frac{2}{\left(1-i\right)\left(1-i\right)^{0}})
Add 1 and 1 to get 2.
Re(\frac{2}{\left(1-i\right)^{1}})
To multiply powers of the same base, add their exponents. Add 1 and 0 to get 1.
Re(\frac{2}{1-i})
Calculate 1-i to the power of 1 and get 1-i.
Re(\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{2}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{2\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 1+2i}{2})
Multiply 2 times 1+i.
Re(\frac{2+2i}{2})
Do the multiplications in 2\times 1+2i.
Re(1+i)
Divide 2+2i by 2 to get 1+i.
1
The real part of 1+i is 1.