Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{3}}{\sqrt{20}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{3}}{2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{3}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{3}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{3}\sqrt{5}}{2\times 5}
The square of \sqrt{5} is 5.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{15}}{2\times 5}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{15}}{10}
Multiply 2 and 5 to get 10.
\frac{3\sqrt{3}\sqrt{15}-\left(\sqrt{15}\right)^{2}}{10}
Use the distributive property to multiply 3\sqrt{3}-\sqrt{15} by \sqrt{15}.
\frac{3\sqrt{3}\sqrt{3}\sqrt{5}-\left(\sqrt{15}\right)^{2}}{10}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\times 3\sqrt{5}-\left(\sqrt{15}\right)^{2}}{10}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{9\sqrt{5}-\left(\sqrt{15}\right)^{2}}{10}
Multiply 3 and 3 to get 9.
\frac{9\sqrt{5}-15}{10}
The square of \sqrt{15} is 15.