Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{2x+1}{1-3x}+\frac{2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{1-3x}{1-3x}.
\frac{\frac{2x+1+2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
Since \frac{2x+1}{1-3x} and \frac{2\left(1-3x\right)}{1-3x} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+1+2-6x}{1-3x}}{\frac{2x+1}{1-3x}-3}
Do the multiplications in 2x+1+2\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-3}
Combine like terms in 2x+1+2-6x.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-\frac{3\left(1-3x\right)}{1-3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{1-3x}{1-3x}.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3\left(1-3x\right)}{1-3x}}
Since \frac{2x+1}{1-3x} and \frac{3\left(1-3x\right)}{1-3x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3+9x}{1-3x}}
Do the multiplications in 2x+1-3\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{11x-2}{1-3x}}
Combine like terms in 2x+1-3+9x.
\frac{\left(-4x+3\right)\left(1-3x\right)}{\left(1-3x\right)\left(11x-2\right)}
Divide \frac{-4x+3}{1-3x} by \frac{11x-2}{1-3x} by multiplying \frac{-4x+3}{1-3x} by the reciprocal of \frac{11x-2}{1-3x}.
\frac{-4x+3}{11x-2}
Cancel out -3x+1 in both numerator and denominator.
\frac{\frac{2x+1}{1-3x}+\frac{2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{1-3x}{1-3x}.
\frac{\frac{2x+1+2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
Since \frac{2x+1}{1-3x} and \frac{2\left(1-3x\right)}{1-3x} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+1+2-6x}{1-3x}}{\frac{2x+1}{1-3x}-3}
Do the multiplications in 2x+1+2\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-3}
Combine like terms in 2x+1+2-6x.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-\frac{3\left(1-3x\right)}{1-3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{1-3x}{1-3x}.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3\left(1-3x\right)}{1-3x}}
Since \frac{2x+1}{1-3x} and \frac{3\left(1-3x\right)}{1-3x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3+9x}{1-3x}}
Do the multiplications in 2x+1-3\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{11x-2}{1-3x}}
Combine like terms in 2x+1-3+9x.
\frac{\left(-4x+3\right)\left(1-3x\right)}{\left(1-3x\right)\left(11x-2\right)}
Divide \frac{-4x+3}{1-3x} by \frac{11x-2}{1-3x} by multiplying \frac{-4x+3}{1-3x} by the reciprocal of \frac{11x-2}{1-3x}.
\frac{-4x+3}{11x-2}
Cancel out -3x+1 in both numerator and denominator.