Evaluate
\frac{3-4x}{11x-2}
Expand
\frac{3-4x}{11x-2}
Graph
Share
Copied to clipboard
\frac{\frac{2x+1}{1-3x}+\frac{2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{1-3x}{1-3x}.
\frac{\frac{2x+1+2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
Since \frac{2x+1}{1-3x} and \frac{2\left(1-3x\right)}{1-3x} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+1+2-6x}{1-3x}}{\frac{2x+1}{1-3x}-3}
Do the multiplications in 2x+1+2\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-3}
Combine like terms in 2x+1+2-6x.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-\frac{3\left(1-3x\right)}{1-3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{1-3x}{1-3x}.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3\left(1-3x\right)}{1-3x}}
Since \frac{2x+1}{1-3x} and \frac{3\left(1-3x\right)}{1-3x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3+9x}{1-3x}}
Do the multiplications in 2x+1-3\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{11x-2}{1-3x}}
Combine like terms in 2x+1-3+9x.
\frac{\left(-4x+3\right)\left(1-3x\right)}{\left(1-3x\right)\left(11x-2\right)}
Divide \frac{-4x+3}{1-3x} by \frac{11x-2}{1-3x} by multiplying \frac{-4x+3}{1-3x} by the reciprocal of \frac{11x-2}{1-3x}.
\frac{-4x+3}{11x-2}
Cancel out -3x+1 in both numerator and denominator.
\frac{\frac{2x+1}{1-3x}+\frac{2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{1-3x}{1-3x}.
\frac{\frac{2x+1+2\left(1-3x\right)}{1-3x}}{\frac{2x+1}{1-3x}-3}
Since \frac{2x+1}{1-3x} and \frac{2\left(1-3x\right)}{1-3x} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+1+2-6x}{1-3x}}{\frac{2x+1}{1-3x}-3}
Do the multiplications in 2x+1+2\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-3}
Combine like terms in 2x+1+2-6x.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1}{1-3x}-\frac{3\left(1-3x\right)}{1-3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{1-3x}{1-3x}.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3\left(1-3x\right)}{1-3x}}
Since \frac{2x+1}{1-3x} and \frac{3\left(1-3x\right)}{1-3x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4x+3}{1-3x}}{\frac{2x+1-3+9x}{1-3x}}
Do the multiplications in 2x+1-3\left(1-3x\right).
\frac{\frac{-4x+3}{1-3x}}{\frac{11x-2}{1-3x}}
Combine like terms in 2x+1-3+9x.
\frac{\left(-4x+3\right)\left(1-3x\right)}{\left(1-3x\right)\left(11x-2\right)}
Divide \frac{-4x+3}{1-3x} by \frac{11x-2}{1-3x} by multiplying \frac{-4x+3}{1-3x} by the reciprocal of \frac{11x-2}{1-3x}.
\frac{-4x+3}{11x-2}
Cancel out -3x+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}