Solve for k
k=-\frac{\sqrt{3}p}{3}+10\sqrt{3}-3
p\neq 30
Solve for p
p=-\sqrt{3}\left(k+3\right)+30
k\neq -3
Quiz
Linear Equation
5 problems similar to:
= \frac { \sqrt { 3 } } { 3 } = \frac { k + 3 } { 30 - p }
Share
Copied to clipboard
\left(p-30\right)\sqrt{3}=-3\left(k+3\right)
Multiply both sides of the equation by 3\left(p-30\right), the least common multiple of 3,30-p.
p\sqrt{3}-30\sqrt{3}=-3\left(k+3\right)
Use the distributive property to multiply p-30 by \sqrt{3}.
p\sqrt{3}-30\sqrt{3}=-3k-9
Use the distributive property to multiply -3 by k+3.
-3k-9=p\sqrt{3}-30\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
-3k=p\sqrt{3}-30\sqrt{3}+9
Add 9 to both sides.
-3k=\sqrt{3}p+9-30\sqrt{3}
The equation is in standard form.
\frac{-3k}{-3}=\frac{\sqrt{3}p+9-30\sqrt{3}}{-3}
Divide both sides by -3.
k=\frac{\sqrt{3}p+9-30\sqrt{3}}{-3}
Dividing by -3 undoes the multiplication by -3.
k=-\frac{\sqrt{3}p}{3}+10\sqrt{3}-3
Divide p\sqrt{3}-30\sqrt{3}+9 by -3.
\left(p-30\right)\sqrt{3}=-3\left(k+3\right)
Variable p cannot be equal to 30 since division by zero is not defined. Multiply both sides of the equation by 3\left(p-30\right), the least common multiple of 3,30-p.
p\sqrt{3}-30\sqrt{3}=-3\left(k+3\right)
Use the distributive property to multiply p-30 by \sqrt{3}.
p\sqrt{3}-30\sqrt{3}=-3k-9
Use the distributive property to multiply -3 by k+3.
p\sqrt{3}=-3k-9+30\sqrt{3}
Add 30\sqrt{3} to both sides.
\sqrt{3}p=-3k+30\sqrt{3}-9
The equation is in standard form.
\frac{\sqrt{3}p}{\sqrt{3}}=\frac{-3k+30\sqrt{3}-9}{\sqrt{3}}
Divide both sides by \sqrt{3}.
p=\frac{-3k+30\sqrt{3}-9}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
p=-\sqrt{3}k+30-3\sqrt{3}
Divide -3k-9+30\sqrt{3} by \sqrt{3}.
p=-\sqrt{3}k+30-3\sqrt{3}\text{, }p\neq 30
Variable p cannot be equal to 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}