Evaluate
\frac{\sqrt{3}x\left(15-x^{2}\right)}{6}
Factor
\frac{\sqrt{3}x\left(15-x^{2}\right)}{6}
Graph
Share
Copied to clipboard
5\times \frac{\sqrt{3}}{2}x-\frac{1}{3}\times \frac{\sqrt{3}}{2}x^{3}
Use the distributive property to multiply \frac{\sqrt{3}}{2} by 5x-\frac{1}{3}x^{3}.
\frac{5\sqrt{3}}{2}x-\frac{1}{3}\times \frac{\sqrt{3}}{2}x^{3}
Express 5\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{5\sqrt{3}x}{2}-\frac{1}{3}\times \frac{\sqrt{3}}{2}x^{3}
Express \frac{5\sqrt{3}}{2}x as a single fraction.
\frac{5\sqrt{3}x}{2}+\frac{-\sqrt{3}}{3\times 2}x^{3}
Multiply -\frac{1}{3} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{5\sqrt{3}x}{2}+\frac{-\sqrt{3}x^{3}}{3\times 2}
Express \frac{-\sqrt{3}}{3\times 2}x^{3} as a single fraction.
\frac{3\times 5\sqrt{3}x}{2\times 3}+\frac{-\sqrt{3}x^{3}}{2\times 3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3\times 2 is 2\times 3. Multiply \frac{5\sqrt{3}x}{2} times \frac{3}{3}.
\frac{3\times 5\sqrt{3}x-\sqrt{3}x^{3}}{2\times 3}
Since \frac{3\times 5\sqrt{3}x}{2\times 3} and \frac{-\sqrt{3}x^{3}}{2\times 3} have the same denominator, add them by adding their numerators.
\frac{15\sqrt{3}x-\sqrt{3}x^{3}}{2\times 3}
Do the multiplications in 3\times 5\sqrt{3}x-\sqrt{3}x^{3}.
\frac{\sqrt{3}x\left(-x^{2}+15\right)}{2\times 3}
Factor the expressions that are not already factored in \frac{15\sqrt{3}x-\sqrt{3}x^{3}}{2\times 3}.
\frac{x\left(-x^{2}+15\right)}{2\sqrt{3}}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{x\left(-x^{2}+15\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{x\left(-x^{2}+15\right)}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{x\left(-x^{2}+15\right)\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{x\left(-x^{2}+15\right)\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\frac{\left(-x^{3}+15x\right)\sqrt{3}}{6}
Use the distributive property to multiply x by -x^{2}+15.
\frac{-x^{3}\sqrt{3}+15x\sqrt{3}}{6}
Use the distributive property to multiply -x^{3}+15x by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}