Evaluate
-\frac{\sqrt{3}}{4}+\frac{1}{4}i\approx -0.433012702+0.25i
Real Part
-\frac{\sqrt{3}}{4} = -0.4330127018922193
Quiz
Complex Number
5 problems similar to:
= \frac { \sqrt { 3 } + i } { ( 1 - \sqrt { 3 } i ) ^ { 2 } }
Share
Copied to clipboard
\frac{\sqrt{3}+i}{1-2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1-i\sqrt{3}\right)^{2}.
\frac{\sqrt{3}+i}{1-2i\sqrt{3}-3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}+i}{-2-2i\sqrt{3}}
Subtract 3 from 1 to get -2.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{\left(-2-2i\sqrt{3}\right)\left(-2+2i\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}+i}{-2-2i\sqrt{3}} by multiplying numerator and denominator by -2+2i\sqrt{3}.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{\left(-2\right)^{2}-\left(-2i\sqrt{3}\right)^{2}}
Consider \left(-2-2i\sqrt{3}\right)\left(-2+2i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-2i\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-2i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2i\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-4\left(\sqrt{3}\right)^{2}\right)}
Calculate -2i to the power of 2 and get -4.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-4\times 3\right)}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-12\right)}
Multiply -4 and 3 to get -12.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4+12}
Multiply -1 and -12 to get 12.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{16}
Add 4 and 12 to get 16.
\frac{-4\sqrt{3}+2i\left(\sqrt{3}\right)^{2}-2i}{16}
Use the distributive property to multiply \sqrt{3}+i by -2+2i\sqrt{3} and combine like terms.
\frac{-4\sqrt{3}+2i\times 3-2i}{16}
The square of \sqrt{3} is 3.
\frac{-4\sqrt{3}+6i-2i}{16}
Multiply 2i and 3 to get 6i.
\frac{-4\sqrt{3}+4i}{16}
Subtract 2i from 6i to get 4i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}