Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}+i}{1-2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1-i\sqrt{3}\right)^{2}.
\frac{\sqrt{3}+i}{1-2i\sqrt{3}-3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}+i}{-2-2i\sqrt{3}}
Subtract 3 from 1 to get -2.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{\left(-2-2i\sqrt{3}\right)\left(-2+2i\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}+i}{-2-2i\sqrt{3}} by multiplying numerator and denominator by -2+2i\sqrt{3}.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{\left(-2\right)^{2}-\left(-2i\sqrt{3}\right)^{2}}
Consider \left(-2-2i\sqrt{3}\right)\left(-2+2i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-2i\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-2i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2i\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-4\left(\sqrt{3}\right)^{2}\right)}
Calculate -2i to the power of 2 and get -4.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-4\times 3\right)}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4-\left(-12\right)}
Multiply -4 and 3 to get -12.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{4+12}
Multiply -1 and -12 to get 12.
\frac{\left(\sqrt{3}+i\right)\left(-2+2i\sqrt{3}\right)}{16}
Add 4 and 12 to get 16.
\frac{-4\sqrt{3}+2i\left(\sqrt{3}\right)^{2}-2i}{16}
Use the distributive property to multiply \sqrt{3}+i by -2+2i\sqrt{3} and combine like terms.
\frac{-4\sqrt{3}+2i\times 3-2i}{16}
The square of \sqrt{3} is 3.
\frac{-4\sqrt{3}+6i-2i}{16}
Multiply 2i and 3 to get 6i.
\frac{-4\sqrt{3}+4i}{16}
Subtract 2i from 6i to get 4i.