Evaluate
\frac{\sqrt{2}+\sqrt{6}-2}{4}\approx 0.465925826
Share
Copied to clipboard
\frac{\sqrt{3}+\sqrt{2}+1}{2\left(2+\sqrt{6}\right)}\times 1
Divide 2-\sqrt{6} by 2-\sqrt{6} to get 1.
\frac{\sqrt{3}+\sqrt{2}+1}{4+2\sqrt{6}}\times 1
Use the distributive property to multiply 2 by 2+\sqrt{6}.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{\left(4+2\sqrt{6}\right)\left(4-2\sqrt{6}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{2}+1}{4+2\sqrt{6}} by multiplying numerator and denominator by 4-2\sqrt{6}.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{4^{2}-\left(2\sqrt{6}\right)^{2}}\times 1
Consider \left(4+2\sqrt{6}\right)\left(4-2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{16-\left(2\sqrt{6}\right)^{2}}\times 1
Calculate 4 to the power of 2 and get 16.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{16-2^{2}\left(\sqrt{6}\right)^{2}}\times 1
Expand \left(2\sqrt{6}\right)^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{16-4\left(\sqrt{6}\right)^{2}}\times 1
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{16-4\times 6}\times 1
The square of \sqrt{6} is 6.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{16-24}\times 1
Multiply 4 and 6 to get 24.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{-8}\times 1
Subtract 24 from 16 to get -8.
\frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{-8}
Express \frac{\left(\sqrt{3}+\sqrt{2}+1\right)\left(4-2\sqrt{6}\right)}{-8}\times 1 as a single fraction.
\frac{4\sqrt{3}-2\sqrt{3}\sqrt{6}+4\sqrt{2}-2\sqrt{2}\sqrt{6}+4-2\sqrt{6}}{-8}
Apply the distributive property by multiplying each term of \sqrt{3}+\sqrt{2}+1 by each term of 4-2\sqrt{6}.
\frac{4\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}+4\sqrt{2}-2\sqrt{2}\sqrt{6}+4-2\sqrt{6}}{-8}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{4\sqrt{3}-2\times 3\sqrt{2}+4\sqrt{2}-2\sqrt{2}\sqrt{6}+4-2\sqrt{6}}{-8}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{4\sqrt{3}-6\sqrt{2}+4\sqrt{2}-2\sqrt{2}\sqrt{6}+4-2\sqrt{6}}{-8}
Multiply -2 and 3 to get -6.
\frac{4\sqrt{3}-2\sqrt{2}-2\sqrt{2}\sqrt{6}+4-2\sqrt{6}}{-8}
Combine -6\sqrt{2} and 4\sqrt{2} to get -2\sqrt{2}.
\frac{4\sqrt{3}-2\sqrt{2}-2\sqrt{2}\sqrt{2}\sqrt{3}+4-2\sqrt{6}}{-8}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{4\sqrt{3}-2\sqrt{2}-2\times 2\sqrt{3}+4-2\sqrt{6}}{-8}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4\sqrt{3}-2\sqrt{2}-4\sqrt{3}+4-2\sqrt{6}}{-8}
Multiply -2 and 2 to get -4.
\frac{-2\sqrt{2}+4-2\sqrt{6}}{-8}
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}