Evaluate
\frac{2x^{2}-2x+1}{1-2x}
Expand
\frac{2x^{2}-2x+1}{1-2x}
Graph
Share
Copied to clipboard
\frac{\frac{xx}{x\left(-x+1\right)}+\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and x is x\left(-x+1\right). Multiply \frac{x}{1-x} times \frac{x}{x}. Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}.
\frac{\frac{xx+\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Since \frac{xx}{x\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+1-x+x^{2}-x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Do the multiplications in xx+\left(1-x\right)\left(-x+1\right).
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Combine like terms in x^{2}+1-x+x^{2}-x.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{xx}{x\left(-x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}. Multiply \frac{x}{1-x} times \frac{x}{x}.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)-xx}{x\left(-x+1\right)}}
Since \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} and \frac{xx}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x+x^{2}-x-x^{2}}{x\left(-x+1\right)}}
Do the multiplications in \left(1-x\right)\left(-x+1\right)-xx.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-2x}{x\left(-x+1\right)}}
Combine like terms in 1-x+x^{2}-x-x^{2}.
\frac{\left(2x^{2}+1-2x\right)x\left(-x+1\right)}{x\left(-x+1\right)\left(1-2x\right)}
Divide \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by \frac{1-2x}{x\left(-x+1\right)} by multiplying \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by the reciprocal of \frac{1-2x}{x\left(-x+1\right)}.
\frac{2x^{2}-2x+1}{-2x+1}
Cancel out x\left(-x+1\right) in both numerator and denominator.
\frac{\frac{xx}{x\left(-x+1\right)}+\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and x is x\left(-x+1\right). Multiply \frac{x}{1-x} times \frac{x}{x}. Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}.
\frac{\frac{xx+\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Since \frac{xx}{x\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+1-x+x^{2}-x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Do the multiplications in xx+\left(1-x\right)\left(-x+1\right).
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Combine like terms in x^{2}+1-x+x^{2}-x.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{xx}{x\left(-x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}. Multiply \frac{x}{1-x} times \frac{x}{x}.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)-xx}{x\left(-x+1\right)}}
Since \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} and \frac{xx}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x+x^{2}-x-x^{2}}{x\left(-x+1\right)}}
Do the multiplications in \left(1-x\right)\left(-x+1\right)-xx.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-2x}{x\left(-x+1\right)}}
Combine like terms in 1-x+x^{2}-x-x^{2}.
\frac{\left(2x^{2}+1-2x\right)x\left(-x+1\right)}{x\left(-x+1\right)\left(1-2x\right)}
Divide \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by \frac{1-2x}{x\left(-x+1\right)} by multiplying \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by the reciprocal of \frac{1-2x}{x\left(-x+1\right)}.
\frac{2x^{2}-2x+1}{-2x+1}
Cancel out x\left(-x+1\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}