Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{xx}{x\left(-x+1\right)}+\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and x is x\left(-x+1\right). Multiply \frac{x}{1-x} times \frac{x}{x}. Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}.
\frac{\frac{xx+\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Since \frac{xx}{x\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+1-x+x^{2}-x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Do the multiplications in xx+\left(1-x\right)\left(-x+1\right).
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Combine like terms in x^{2}+1-x+x^{2}-x.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{xx}{x\left(-x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}. Multiply \frac{x}{1-x} times \frac{x}{x}.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)-xx}{x\left(-x+1\right)}}
Since \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} and \frac{xx}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x+x^{2}-x-x^{2}}{x\left(-x+1\right)}}
Do the multiplications in \left(1-x\right)\left(-x+1\right)-xx.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-2x}{x\left(-x+1\right)}}
Combine like terms in 1-x+x^{2}-x-x^{2}.
\frac{\left(2x^{2}+1-2x\right)x\left(-x+1\right)}{x\left(-x+1\right)\left(1-2x\right)}
Divide \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by \frac{1-2x}{x\left(-x+1\right)} by multiplying \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by the reciprocal of \frac{1-2x}{x\left(-x+1\right)}.
\frac{2x^{2}-2x+1}{-2x+1}
Cancel out x\left(-x+1\right) in both numerator and denominator.
\frac{\frac{xx}{x\left(-x+1\right)}+\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and x is x\left(-x+1\right). Multiply \frac{x}{1-x} times \frac{x}{x}. Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}.
\frac{\frac{xx+\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Since \frac{xx}{x\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+1-x+x^{2}-x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Do the multiplications in xx+\left(1-x\right)\left(-x+1\right).
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x}{x}-\frac{x}{1-x}}
Combine like terms in x^{2}+1-x+x^{2}-x.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{xx}{x\left(-x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{1-x}{x} times \frac{-x+1}{-x+1}. Multiply \frac{x}{1-x} times \frac{x}{x}.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{\left(1-x\right)\left(-x+1\right)-xx}{x\left(-x+1\right)}}
Since \frac{\left(1-x\right)\left(-x+1\right)}{x\left(-x+1\right)} and \frac{xx}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-x+x^{2}-x-x^{2}}{x\left(-x+1\right)}}
Do the multiplications in \left(1-x\right)\left(-x+1\right)-xx.
\frac{\frac{2x^{2}+1-2x}{x\left(-x+1\right)}}{\frac{1-2x}{x\left(-x+1\right)}}
Combine like terms in 1-x+x^{2}-x-x^{2}.
\frac{\left(2x^{2}+1-2x\right)x\left(-x+1\right)}{x\left(-x+1\right)\left(1-2x\right)}
Divide \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by \frac{1-2x}{x\left(-x+1\right)} by multiplying \frac{2x^{2}+1-2x}{x\left(-x+1\right)} by the reciprocal of \frac{1-2x}{x\left(-x+1\right)}.
\frac{2x^{2}-2x+1}{-2x+1}
Cancel out x\left(-x+1\right) in both numerator and denominator.