Evaluate
-1+\frac{1}{y}
Expand
-1+\frac{1}{y}
Graph
Quiz
Polynomial
5 problems similar to:
= \frac { \frac { 1 } { y ^ { 2 } } - 1 } { 1 + \frac { 1 } { y } }
Share
Copied to clipboard
\frac{\frac{1}{y^{2}}-\frac{y^{2}}{y^{2}}}{1+\frac{1}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{1-y^{2}}{y^{2}}}{1+\frac{1}{y}}
Since \frac{1}{y^{2}} and \frac{y^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-y^{2}}{y^{2}}}{\frac{y}{y}+\frac{1}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{1-y^{2}}{y^{2}}}{\frac{y+1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, add them by adding their numerators.
\frac{\left(1-y^{2}\right)y}{y^{2}\left(y+1\right)}
Divide \frac{1-y^{2}}{y^{2}} by \frac{y+1}{y} by multiplying \frac{1-y^{2}}{y^{2}} by the reciprocal of \frac{y+1}{y}.
\frac{-y^{2}+1}{y\left(y+1\right)}
Cancel out y in both numerator and denominator.
\frac{\left(y-1\right)\left(-y-1\right)}{y\left(y+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(y-1\right)\left(y+1\right)}{y\left(y+1\right)}
Extract the negative sign in -1-y.
\frac{-\left(y-1\right)}{y}
Cancel out y+1 in both numerator and denominator.
\frac{-y+1}{y}
Expand the expression.
\frac{\frac{1}{y^{2}}-\frac{y^{2}}{y^{2}}}{1+\frac{1}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{1-y^{2}}{y^{2}}}{1+\frac{1}{y}}
Since \frac{1}{y^{2}} and \frac{y^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-y^{2}}{y^{2}}}{\frac{y}{y}+\frac{1}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{1-y^{2}}{y^{2}}}{\frac{y+1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, add them by adding their numerators.
\frac{\left(1-y^{2}\right)y}{y^{2}\left(y+1\right)}
Divide \frac{1-y^{2}}{y^{2}} by \frac{y+1}{y} by multiplying \frac{1-y^{2}}{y^{2}} by the reciprocal of \frac{y+1}{y}.
\frac{-y^{2}+1}{y\left(y+1\right)}
Cancel out y in both numerator and denominator.
\frac{\left(y-1\right)\left(-y-1\right)}{y\left(y+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(y-1\right)\left(y+1\right)}{y\left(y+1\right)}
Extract the negative sign in -1-y.
\frac{-\left(y-1\right)}{y}
Cancel out y+1 in both numerator and denominator.
\frac{-y+1}{y}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}