Evaluate
\frac{2\left(-2x+y-1\right)}{x\left(3x-4y+3\right)}
Expand
-\frac{2\left(2x-y+1\right)}{3x^{2}-4xy+3x}
Share
Copied to clipboard
\frac{-2y+2x+1-6x+4y-3}{3x^{2}-4xy+3x}
To find the opposite of 6x-4y+3, find the opposite of each term.
\frac{-2y-4x+1+4y-3}{3x^{2}-4xy+3x}
Combine 2x and -6x to get -4x.
\frac{2y-4x+1-3}{3x^{2}-4xy+3x}
Combine -2y and 4y to get 2y.
\frac{2y-4x-2}{3x^{2}-4xy+3x}
Subtract 3 from 1 to get -2.
\frac{-2y+2x+1-6x+4y-3}{3x^{2}-4xy+3x}
To find the opposite of 6x-4y+3, find the opposite of each term.
\frac{-2y-4x+1+4y-3}{3x^{2}-4xy+3x}
Combine 2x and -6x to get -4x.
\frac{2y-4x+1-3}{3x^{2}-4xy+3x}
Combine -2y and 4y to get 2y.
\frac{2y-4x-2}{3x^{2}-4xy+3x}
Subtract 3 from 1 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}