Evaluate
-\frac{49}{10}=-4.9
Factor
-\frac{49}{10} = -4\frac{9}{10} = -4.9
Share
Copied to clipboard
\frac{24}{20}+\frac{45}{20}+\frac{11}{5}+\frac{1}{5}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Least common multiple of 5 and 4 is 20. Convert \frac{6}{5} and \frac{9}{4} to fractions with denominator 20.
\frac{24+45}{20}+\frac{11}{5}+\frac{1}{5}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Since \frac{24}{20} and \frac{45}{20} have the same denominator, add them by adding their numerators.
\frac{69}{20}+\frac{11}{5}+\frac{1}{5}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Add 24 and 45 to get 69.
\frac{69}{20}+\frac{44}{20}+\frac{1}{5}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Least common multiple of 20 and 5 is 20. Convert \frac{69}{20} and \frac{11}{5} to fractions with denominator 20.
\frac{69+44}{20}+\frac{1}{5}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Since \frac{69}{20} and \frac{44}{20} have the same denominator, add them by adding their numerators.
\frac{113}{20}+\frac{1}{5}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Add 69 and 44 to get 113.
\frac{113}{20}+\frac{4}{20}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Least common multiple of 20 and 5 is 20. Convert \frac{113}{20} and \frac{1}{5} to fractions with denominator 20.
\frac{113+4}{20}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Since \frac{113}{20} and \frac{4}{20} have the same denominator, add them by adding their numerators.
\frac{117}{20}-\frac{4}{1}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Add 113 and 4 to get 117.
\frac{117}{20}-4-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Anything divided by one gives itself.
\frac{117}{20}-\frac{80}{20}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Convert 4 to fraction \frac{80}{20}.
\frac{117-80}{20}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Since \frac{117}{20} and \frac{80}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{37}{20}-\frac{3}{1}-\frac{5}{2}-\frac{5}{4}
Subtract 80 from 117 to get 37.
\frac{37}{20}-3-\frac{5}{2}-\frac{5}{4}
Anything divided by one gives itself.
\frac{37}{20}-\frac{60}{20}-\frac{5}{2}-\frac{5}{4}
Convert 3 to fraction \frac{60}{20}.
\frac{37-60}{20}-\frac{5}{2}-\frac{5}{4}
Since \frac{37}{20} and \frac{60}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{23}{20}-\frac{5}{2}-\frac{5}{4}
Subtract 60 from 37 to get -23.
-\frac{23}{20}-\frac{50}{20}-\frac{5}{4}
Least common multiple of 20 and 2 is 20. Convert -\frac{23}{20} and \frac{5}{2} to fractions with denominator 20.
\frac{-23-50}{20}-\frac{5}{4}
Since -\frac{23}{20} and \frac{50}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{73}{20}-\frac{5}{4}
Subtract 50 from -23 to get -73.
-\frac{73}{20}-\frac{25}{20}
Least common multiple of 20 and 4 is 20. Convert -\frac{73}{20} and \frac{5}{4} to fractions with denominator 20.
\frac{-73-25}{20}
Since -\frac{73}{20} and \frac{25}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{-98}{20}
Subtract 25 from -73 to get -98.
-\frac{49}{10}
Reduce the fraction \frac{-98}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}