Solve for x
x = \frac{8101 - \sqrt{16201}}{5832} \approx 1.3672354
Graph
Share
Copied to clipboard
\sqrt{x}=75-54x
Subtract 54x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(75-54x\right)^{2}
Square both sides of the equation.
x=\left(75-54x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=5625-8100x+2916x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(75-54x\right)^{2}.
x-5625=-8100x+2916x^{2}
Subtract 5625 from both sides.
x-5625+8100x=2916x^{2}
Add 8100x to both sides.
8101x-5625=2916x^{2}
Combine x and 8100x to get 8101x.
8101x-5625-2916x^{2}=0
Subtract 2916x^{2} from both sides.
-2916x^{2}+8101x-5625=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8101±\sqrt{8101^{2}-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2916 for a, 8101 for b, and -5625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8101±\sqrt{65626201-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
Square 8101.
x=\frac{-8101±\sqrt{65626201+11664\left(-5625\right)}}{2\left(-2916\right)}
Multiply -4 times -2916.
x=\frac{-8101±\sqrt{65626201-65610000}}{2\left(-2916\right)}
Multiply 11664 times -5625.
x=\frac{-8101±\sqrt{16201}}{2\left(-2916\right)}
Add 65626201 to -65610000.
x=\frac{-8101±\sqrt{16201}}{-5832}
Multiply 2 times -2916.
x=\frac{\sqrt{16201}-8101}{-5832}
Now solve the equation x=\frac{-8101±\sqrt{16201}}{-5832} when ± is plus. Add -8101 to \sqrt{16201}.
x=\frac{8101-\sqrt{16201}}{5832}
Divide -8101+\sqrt{16201} by -5832.
x=\frac{-\sqrt{16201}-8101}{-5832}
Now solve the equation x=\frac{-8101±\sqrt{16201}}{-5832} when ± is minus. Subtract \sqrt{16201} from -8101.
x=\frac{\sqrt{16201}+8101}{5832}
Divide -8101-\sqrt{16201} by -5832.
x=\frac{8101-\sqrt{16201}}{5832} x=\frac{\sqrt{16201}+8101}{5832}
The equation is now solved.
54\times \frac{8101-\sqrt{16201}}{5832}+\sqrt{\frac{8101-\sqrt{16201}}{5832}}=75
Substitute \frac{8101-\sqrt{16201}}{5832} for x in the equation 54x+\sqrt{x}=75.
75=75
Simplify. The value x=\frac{8101-\sqrt{16201}}{5832} satisfies the equation.
54\times \frac{\sqrt{16201}+8101}{5832}+\sqrt{\frac{\sqrt{16201}+8101}{5832}}=75
Substitute \frac{\sqrt{16201}+8101}{5832} for x in the equation 54x+\sqrt{x}=75.
\frac{1}{54}\times 16201^{\frac{1}{2}}+\frac{4051}{54}=75
Simplify. The value x=\frac{\sqrt{16201}+8101}{5832} does not satisfy the equation.
x=\frac{8101-\sqrt{16201}}{5832}
Equation \sqrt{x}=75-54x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}