Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=75-54x
Subtract 54x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(75-54x\right)^{2}
Square both sides of the equation.
x=\left(75-54x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=5625-8100x+2916x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(75-54x\right)^{2}.
x-5625=-8100x+2916x^{2}
Subtract 5625 from both sides.
x-5625+8100x=2916x^{2}
Add 8100x to both sides.
8101x-5625=2916x^{2}
Combine x and 8100x to get 8101x.
8101x-5625-2916x^{2}=0
Subtract 2916x^{2} from both sides.
-2916x^{2}+8101x-5625=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8101±\sqrt{8101^{2}-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2916 for a, 8101 for b, and -5625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8101±\sqrt{65626201-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
Square 8101.
x=\frac{-8101±\sqrt{65626201+11664\left(-5625\right)}}{2\left(-2916\right)}
Multiply -4 times -2916.
x=\frac{-8101±\sqrt{65626201-65610000}}{2\left(-2916\right)}
Multiply 11664 times -5625.
x=\frac{-8101±\sqrt{16201}}{2\left(-2916\right)}
Add 65626201 to -65610000.
x=\frac{-8101±\sqrt{16201}}{-5832}
Multiply 2 times -2916.
x=\frac{\sqrt{16201}-8101}{-5832}
Now solve the equation x=\frac{-8101±\sqrt{16201}}{-5832} when ± is plus. Add -8101 to \sqrt{16201}.
x=\frac{8101-\sqrt{16201}}{5832}
Divide -8101+\sqrt{16201} by -5832.
x=\frac{-\sqrt{16201}-8101}{-5832}
Now solve the equation x=\frac{-8101±\sqrt{16201}}{-5832} when ± is minus. Subtract \sqrt{16201} from -8101.
x=\frac{\sqrt{16201}+8101}{5832}
Divide -8101-\sqrt{16201} by -5832.
x=\frac{8101-\sqrt{16201}}{5832} x=\frac{\sqrt{16201}+8101}{5832}
The equation is now solved.
54\times \frac{8101-\sqrt{16201}}{5832}+\sqrt{\frac{8101-\sqrt{16201}}{5832}}=75
Substitute \frac{8101-\sqrt{16201}}{5832} for x in the equation 54x+\sqrt{x}=75.
75=75
Simplify. The value x=\frac{8101-\sqrt{16201}}{5832} satisfies the equation.
54\times \frac{\sqrt{16201}+8101}{5832}+\sqrt{\frac{\sqrt{16201}+8101}{5832}}=75
Substitute \frac{\sqrt{16201}+8101}{5832} for x in the equation 54x+\sqrt{x}=75.
\frac{1}{54}\times 16201^{\frac{1}{2}}+\frac{4051}{54}=75
Simplify. The value x=\frac{\sqrt{16201}+8101}{5832} does not satisfy the equation.
x=\frac{8101-\sqrt{16201}}{5832}
Equation \sqrt{x}=75-54x has a unique solution.