Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=7.5-5.4x
Subtract 5.4x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(7.5-5.4x\right)^{2}
Square both sides of the equation.
x=\left(7.5-5.4x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=56.25-81x+29.16x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7.5-5.4x\right)^{2}.
x-56.25=-81x+29.16x^{2}
Subtract 56.25 from both sides.
x-56.25+81x=29.16x^{2}
Add 81x to both sides.
82x-56.25=29.16x^{2}
Combine x and 81x to get 82x.
82x-56.25-29.16x^{2}=0
Subtract 29.16x^{2} from both sides.
-29.16x^{2}+82x-56.25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-82±\sqrt{82^{2}-4\left(-29.16\right)\left(-56.25\right)}}{2\left(-29.16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -29.16 for a, 82 for b, and -56.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-82±\sqrt{6724-4\left(-29.16\right)\left(-56.25\right)}}{2\left(-29.16\right)}
Square 82.
x=\frac{-82±\sqrt{6724+116.64\left(-56.25\right)}}{2\left(-29.16\right)}
Multiply -4 times -29.16.
x=\frac{-82±\sqrt{6724-6561}}{2\left(-29.16\right)}
Multiply 116.64 times -56.25 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-82±\sqrt{163}}{2\left(-29.16\right)}
Add 6724 to -6561.
x=\frac{-82±\sqrt{163}}{-58.32}
Multiply 2 times -29.16.
x=\frac{\sqrt{163}-82}{-58.32}
Now solve the equation x=\frac{-82±\sqrt{163}}{-58.32} when ± is plus. Add -82 to \sqrt{163}.
x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
Divide -82+\sqrt{163} by -58.32 by multiplying -82+\sqrt{163} by the reciprocal of -58.32.
x=\frac{-\sqrt{163}-82}{-58.32}
Now solve the equation x=\frac{-82±\sqrt{163}}{-58.32} when ± is minus. Subtract \sqrt{163} from -82.
x=\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
Divide -82-\sqrt{163} by -58.32 by multiplying -82-\sqrt{163} by the reciprocal of -58.32.
x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729} x=\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
The equation is now solved.
5.4\left(-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}\right)+\sqrt{-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}}=7.5
Substitute -\frac{25\sqrt{163}}{1458}+\frac{1025}{729} for x in the equation 5.4x+\sqrt{x}=7.5.
\frac{15}{2}=7.5
Simplify. The value x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729} satisfies the equation.
5.4\left(\frac{25\sqrt{163}}{1458}+\frac{1025}{729}\right)+\sqrt{\frac{25\sqrt{163}}{1458}+\frac{1025}{729}}=7.5
Substitute \frac{25\sqrt{163}}{1458}+\frac{1025}{729} for x in the equation 5.4x+\sqrt{x}=7.5.
\frac{5}{27}\times 163^{\frac{1}{2}}+\frac{415}{54}=7.5
Simplify. The value x=\frac{25\sqrt{163}}{1458}+\frac{1025}{729} does not satisfy the equation.
x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
Equation \sqrt{x}=-\frac{27x}{5}+7.5 has a unique solution.