Solve for x
x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}\approx 1.187120279
Graph
Share
Copied to clipboard
\sqrt{x}=7.5-5.4x
Subtract 5.4x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(7.5-5.4x\right)^{2}
Square both sides of the equation.
x=\left(7.5-5.4x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=56.25-81x+29.16x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7.5-5.4x\right)^{2}.
x-56.25=-81x+29.16x^{2}
Subtract 56.25 from both sides.
x-56.25+81x=29.16x^{2}
Add 81x to both sides.
82x-56.25=29.16x^{2}
Combine x and 81x to get 82x.
82x-56.25-29.16x^{2}=0
Subtract 29.16x^{2} from both sides.
-29.16x^{2}+82x-56.25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-82±\sqrt{82^{2}-4\left(-29.16\right)\left(-56.25\right)}}{2\left(-29.16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -29.16 for a, 82 for b, and -56.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-82±\sqrt{6724-4\left(-29.16\right)\left(-56.25\right)}}{2\left(-29.16\right)}
Square 82.
x=\frac{-82±\sqrt{6724+116.64\left(-56.25\right)}}{2\left(-29.16\right)}
Multiply -4 times -29.16.
x=\frac{-82±\sqrt{6724-6561}}{2\left(-29.16\right)}
Multiply 116.64 times -56.25 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-82±\sqrt{163}}{2\left(-29.16\right)}
Add 6724 to -6561.
x=\frac{-82±\sqrt{163}}{-58.32}
Multiply 2 times -29.16.
x=\frac{\sqrt{163}-82}{-58.32}
Now solve the equation x=\frac{-82±\sqrt{163}}{-58.32} when ± is plus. Add -82 to \sqrt{163}.
x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
Divide -82+\sqrt{163} by -58.32 by multiplying -82+\sqrt{163} by the reciprocal of -58.32.
x=\frac{-\sqrt{163}-82}{-58.32}
Now solve the equation x=\frac{-82±\sqrt{163}}{-58.32} when ± is minus. Subtract \sqrt{163} from -82.
x=\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
Divide -82-\sqrt{163} by -58.32 by multiplying -82-\sqrt{163} by the reciprocal of -58.32.
x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729} x=\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
The equation is now solved.
5.4\left(-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}\right)+\sqrt{-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}}=7.5
Substitute -\frac{25\sqrt{163}}{1458}+\frac{1025}{729} for x in the equation 5.4x+\sqrt{x}=7.5.
\frac{15}{2}=7.5
Simplify. The value x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729} satisfies the equation.
5.4\left(\frac{25\sqrt{163}}{1458}+\frac{1025}{729}\right)+\sqrt{\frac{25\sqrt{163}}{1458}+\frac{1025}{729}}=7.5
Substitute \frac{25\sqrt{163}}{1458}+\frac{1025}{729} for x in the equation 5.4x+\sqrt{x}=7.5.
\frac{5}{27}\times 163^{\frac{1}{2}}+\frac{415}{54}=7.5
Simplify. The value x=\frac{25\sqrt{163}}{1458}+\frac{1025}{729} does not satisfy the equation.
x=-\frac{25\sqrt{163}}{1458}+\frac{1025}{729}
Equation \sqrt{x}=-\frac{27x}{5}+7.5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}