Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+8x=2002
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+8x-2002=2002-2002
Subtract 2002 from both sides of the equation.
-x^{2}+8x-2002=0
Subtracting 2002 from itself leaves 0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-2002\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and -2002 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-2002\right)}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\left(-2002\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64-8008}}{2\left(-1\right)}
Multiply 4 times -2002.
x=\frac{-8±\sqrt{-7944}}{2\left(-1\right)}
Add 64 to -8008.
x=\frac{-8±2\sqrt{1986}i}{2\left(-1\right)}
Take the square root of -7944.
x=\frac{-8±2\sqrt{1986}i}{-2}
Multiply 2 times -1.
x=\frac{-8+2\sqrt{1986}i}{-2}
Now solve the equation x=\frac{-8±2\sqrt{1986}i}{-2} when ± is plus. Add -8 to 2i\sqrt{1986}.
x=-\sqrt{1986}i+4
Divide -8+2i\sqrt{1986} by -2.
x=\frac{-2\sqrt{1986}i-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{1986}i}{-2} when ± is minus. Subtract 2i\sqrt{1986} from -8.
x=4+\sqrt{1986}i
Divide -8-2i\sqrt{1986} by -2.
x=-\sqrt{1986}i+4 x=4+\sqrt{1986}i
The equation is now solved.
-x^{2}+8x=2002
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+8x}{-1}=\frac{2002}{-1}
Divide both sides by -1.
x^{2}+\frac{8}{-1}x=\frac{2002}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-8x=\frac{2002}{-1}
Divide 8 by -1.
x^{2}-8x=-2002
Divide 2002 by -1.
x^{2}-8x+\left(-4\right)^{2}=-2002+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-2002+16
Square -4.
x^{2}-8x+16=-1986
Add -2002 to 16.
\left(x-4\right)^{2}=-1986
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-1986}
Take the square root of both sides of the equation.
x-4=\sqrt{1986}i x-4=-\sqrt{1986}i
Simplify.
x=4+\sqrt{1986}i x=-\sqrt{1986}i+4
Add 4 to both sides of the equation.