Evaluate
\frac{2\sqrt{6}H}{9}
Differentiate w.r.t. H
\frac{2 \sqrt{6}}{9} = 0.5443310539518174
Share
Copied to clipboard
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}}+\frac{2}{\sqrt{3}+1}}\times \frac{1}{\sqrt{6}}
To raise \frac{2-\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}}+\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}}\times \frac{1}{\sqrt{6}}
Rationalize the denominator of \frac{2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}}+\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}}\times \frac{1}{\sqrt{6}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}}+\frac{2\left(\sqrt{3}-1\right)}{3-1}}\times \frac{1}{\sqrt{6}}
Square \sqrt{3}. Square 1.
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}}+\frac{2\left(\sqrt{3}-1\right)}{2}}\times \frac{1}{\sqrt{6}}
Subtract 1 from 3 to get 2.
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}}+\sqrt{3}-1}\times \frac{1}{\sqrt{6}}
Cancel out 2 and 2.
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{3}-1\right)\times 2^{2}}{2^{2}}}\times \frac{1}{\sqrt{6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3}-1 times \frac{2^{2}}{2^{2}}.
\frac{H}{\frac{\left(2-\sqrt{3}\right)^{2}+\left(\sqrt{3}-1\right)\times 2^{2}}{2^{2}}}\times \frac{1}{\sqrt{6}}
Since \frac{\left(2-\sqrt{3}\right)^{2}}{2^{2}} and \frac{\left(\sqrt{3}-1\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{H\times 2^{2}}{\left(2-\sqrt{3}\right)^{2}+\left(\sqrt{3}-1\right)\times 2^{2}}\times \frac{1}{\sqrt{6}}
Divide H by \frac{\left(2-\sqrt{3}\right)^{2}+\left(\sqrt{3}-1\right)\times 2^{2}}{2^{2}} by multiplying H by the reciprocal of \frac{\left(2-\sqrt{3}\right)^{2}+\left(\sqrt{3}-1\right)\times 2^{2}}{2^{2}}.
\frac{H\times 4}{\left(2-\sqrt{3}\right)^{2}+\left(\sqrt{3}-1\right)\times 2^{2}}\times \frac{1}{\sqrt{6}}
Calculate 2 to the power of 2 and get 4.
\frac{H\times 4}{4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{3}-1\right)\times 2^{2}}\times \frac{1}{\sqrt{6}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
\frac{H\times 4}{4-4\sqrt{3}+3+\left(\sqrt{3}-1\right)\times 2^{2}}\times \frac{1}{\sqrt{6}}
The square of \sqrt{3} is 3.
\frac{H\times 4}{7-4\sqrt{3}+\left(\sqrt{3}-1\right)\times 2^{2}}\times \frac{1}{\sqrt{6}}
Add 4 and 3 to get 7.
\frac{H\times 4}{7-4\sqrt{3}+\left(\sqrt{3}-1\right)\times 4}\times \frac{1}{\sqrt{6}}
Calculate 2 to the power of 2 and get 4.
\frac{H\times 4}{7-4\sqrt{3}+\left(\sqrt{3}-1\right)\times 4}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{H\times 4}{7-4\sqrt{3}+\left(\sqrt{3}-1\right)\times 4}\times \frac{\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{H\times 4\sqrt{6}}{\left(7-4\sqrt{3}+\left(\sqrt{3}-1\right)\times 4\right)\times 6}
Multiply \frac{H\times 4}{7-4\sqrt{3}+\left(\sqrt{3}-1\right)\times 4} times \frac{\sqrt{6}}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{6}H}{3\left(4\left(\sqrt{3}-1\right)-4\sqrt{3}+7\right)}
Cancel out 2 in both numerator and denominator.
\frac{2\sqrt{6}H}{3\left(4\sqrt{3}-4-4\sqrt{3}+7\right)}
Use the distributive property to multiply 4 by \sqrt{3}-1.
\frac{2\sqrt{6}H}{3\left(-4+7\right)}
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.
\frac{2\sqrt{6}H}{3\times 3}
Add -4 and 7 to get 3.
\frac{2\sqrt{6}H}{9}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}